Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department

Academic Program and Course Description Guide

2025

Introduction:

The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program.

The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work.

In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process.

Concepts and terminology:

Academic Program Description: The academic program description provides a brief summary of its vision, mission and objectives, including an accurate description of the targeted learning outcomes according to specific learning strategies.

<u>Course Description</u>: Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description.

1

<u>Program Vision:</u> An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable.

<u>Program Mission</u>: Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions.

Program Objectives: They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

<u>**Curriculum Structure:**</u> All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours.

Learning Outcomes: A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program.

Teaching and learning strategies: They are the strategies used by the faculty members to develop students' teaching and learning, and they are plans that are followed to reach the learning goals. They describe all classroom and extra-curricular activities to achieve the learning outcomes of the program.

Academic Program Description Form

University Name: Southern Technical Universit.... Faculty/Institute: Technical Institute of Architecture..... Scientific Department: Electronic and communications technologies Academic or Professional Program Name: Diploma in electronics and communications technology..... Final Certificate Name: Diploma in electronic and communications technolog..... Academic System: ... quarterly ... Description Preparation Date: 15/10/2023 File Completion Date: 5/5/2025

Signature:

Raheem Resen

J.K.M Signature:

Scientific Associate Name:Dr. Jihad Kadhim Muhammad

Date: 25,6,2025

Date: 25/6/2025

The file is checked by:

Department of Quality Assurance and University Performance Director of the Quality Assurance and University Performance Department: Msc. Akram Karim Khader

Date: 25/6/2026 Signature:

Approval of the Dean

الممسوحة ضوئيا بـ CamScanner 🖸

1. Program Vision

Forming a scientific or human base in the field of maintenance, programming and upkeep of electronic devices and computer applications. It seeks to prepare plans to develop staff and curricula to ensure that the requirements of quality standards are met, in addition to keeping pace with development and ready-made applications in order to contribute to achieving part of them, and for the department to be a distinguished scientific research edifice in its programs and curricula. And his scientific research.

2. Program Mission

The department seeks to prepare specialized staff with a high level of professionalism to deal with electronic and information software and work to provide appropriate opportunities to develop the community's capabilities in investing in the developments in technology and meeting their needs in the field of computers, and providing training consulting services.

3. Program Objectives

1- Preparing qualified technical personnel to maintain electronic equipment and devices.

- 2- Preparing and verifying the data and entering it into the computer.
- 3- Participate in testing, auditing and debugging programmed systems.
- 4- Participation in preparing communications system designs.

4. Program Accreditation

None

5. Other external influences

1-Application + research projects + ongoing workshops for students.

2- Also, external influences contribute to solving many of the dilemmas related to approved studies.

3- Labor market needs, quality of graduates, and support of students' skills.

6. Program Struc	ture			
Program Structure	Number of Courses	Credit hours	Percentage	Reviews*
Institution Requirements	15 The first	25 units	46%	Specialization
	stage	23 units	54%	+
	16The second			assistant
	stage			
Summer Training	For two month	s for the first sta	ge	
Other				

* This can include notes whether the course is basic or optional.

7. Program I	7. Program Description								
Year/Level	Course Code	Course Name	Credit Hours						
			theoretical	practical					
	COM1		0	2					
		Computer principles 1							
	MATH		2	0					
		mathematics							
	ELEC		2	2					
2022/2023		Principles of electronics							

	[1		1
The first stage	DC	DC circuits	2	2
Chapter I	DIG	Principles of digital circuits	2	2
	DRA	Electrical and engineering drawing	0	3
	WOR		0	4
	HUM	The workshop	2	0
		Human rights and democracy	2	U
المجموع			10	15
	ENG		<u>10</u> 2	0
		English language (1)		
2022/2023	WOR	The workshop	2	4
2022/2023	ELEC	The workshop	2	2
The first stage	ELEU	Electronics	2	<u> </u>
6	AC		2	2
Chapter II		AC circuits	-	_
	DIG		2	2
		Digital circuit applications		
	DRA		0	4
	~~~~	Calculator assisted drawing		
	SFE	Occurrentianel cofeta	2	0
المجموع		Occupational safety	12	14
	ELEC		2	2
2022/2023		<b>Electronic circuits</b> (1)	2	<u> </u>
	DEV		2	2
The second		Measuring devices (1)	-	-
	СОМ		2	2
phase		Microcalculators (1)		
Chapter one	COMMU		2	2
Chapter One	WOR	Communications (1)	Δ	
	WUK	Electronic devices maintenance	0	4
	ENG	Literome we vices munitenance	2	0
		English language (2)		v
	PLC		2	2
		Logic control circuits		
	PRO		0	0
	PRO	Research project	_	
المجموع		Research project	14	14
المجموع	PRO ELEC		_	
المجموع	ELEC	Research project Electronic circuits (2)	<u>14</u> 2	14 2
المجموع		Electronic circuits (2)	14	14
المجموع	ELEC		<u>14</u> 2	14 2

	WOR		0	4
		Maintenance of electronic devices		
	CON		2	2
		Control systems	_	
	COMP		0	2
		Computer applications		
	ICS		2	2
		Audio and visual devices		
	CRI		2	0
		Baath crimes		
	PROJ		0	2
		research project	-	
المجموع			12	18

Number of theoretical hours for the two years = 42

Percentage of theoretical hours = 40%

Number of practical hours for two years = 62

Percentage of practical hours = 60%

Total graduation units for the two years = 104

8. Expected learning outcomes of the program	
Knowledge	
A1- Introducing the student to the design of electronic circuits and the extent	
of their realistic implementation.	
A2- Teaching the student the basics of electronics.	
A3- Providing the student with the skills to implement and install electronic	
equipment and devices.	
A4- The student's knowledge of digital and logical circuits and their	
implementation areas.	
A5- The student's knowledge of the labor market and changes in the fields of	
electronics.	
A6- The student's knowledge of how to conduct laboratory experiments and	
how to analyze and apply the results.	
Skills	

B1 - Carrying out periodic and emergency maintenance work forelectronic equipment and devices.B2 - Installing electronic devices and their components andimplementing maintenance methods for them.B 3- Maintaining electronic devices and ensuring their durability.B4- Installing, maintaining and operating communications and digitaldevices.

#### Ethics

C1- Introducing the graduate into the labor market and spreading the spirit

of fair competition.

C2- Competition among undergraduate students for the purpose of

completing higher university studies.

C3- The ability to analyze, deduce, and practice professional ethics in all

circumstances.

C4- Working under pressure, adopting equality and justice, and working as

a member of one team.

### 9. Teaching and Learning Strategies

- Education strategies:

Teaching strategies are the methods and approaches followed by the professor in

communicating educational goals to students. Below are some of the teaching strategies:

1- Lecture or delivery strategy: In which the professor presents information, facts, and other ideas to the students related to the topic at hand.

2- Discussion strategy: In this type of teaching strategy, the professor determines the topic that will be discussed in the lecture

**3-** Problem-solving strategy: In this strategy, the cognitive environment of students is activated through problem-solving activities, through most positive processes and activities that stimulate thinking and raise motivation to learn.

4-Project-based learning strategy: This strategy relies on design work that requires applied work. Students are assigned an applied project for the activity, and they are forced to research, read, and use books and all cognitive sources in order to accomplish what is required.

-Learning strategies:

These are the methods that the student follows in order to get the best benefit from the educational material, and the most important strategies are:

1- Conducting daily exams for students before the start of the lecture in order to remember previous lectures and information.

2-One of the best types of learning methods is (studying), through which the student can memorize any electronic design circuit or law.

**3-** Inference, that is, teachers can reinforce this strategy by asking inferential questions after each lecture.

#### **10. Evaluation methods**

Tests of both written and oral, in-person and electronic, daily, semester and final examinations, in addition to daily examinations, writing reports, discussing experiments and analyzing results.

11.Faculty							
Faculty Member Academic Rank	S Specialization		Special Requirements/Skil ls (if applicable)	Number of the teaching staff			
	General	Special		Staff	Lecturer		
1- A.P.DR.	communication	Networks	Giving	Personnel			
Muhsin Jabbar			awareness				
Kabayan	electricity	Control	lectures				
2-A.L. Iqbal			Holding	personnel			
Hanoun listens	electricity	Power	workshops				
3- A.L. Wissam			and	personnel			
Rahim Rassan	Calculators	Systems	seminars		lecturer		
4- A.L. Mortada		networks					
Thaer Salem							
					lecturer		
5- A.L. Saja Sami	Law	rights					
Mahmoud							

### Professional Development Mentoring new faculty members

1- Holding workshops, seminars and seminars on developments in the field of electronics and

information technology for reliability.

2- Put them in courses to develop administrative skills, time management, and smart skills.

3- Keeping pace and following up on the implementation of the government program and

income.

#### Professional development of faculty members

The focus in the Department of Electronic and Communications Technologies in general is on continuous improvement. The department always seeks to improve the scientific and administrative process and overcome all the difficulties and obstacles that hinder the educational program by developing human resources for personal and professional development.

The following procedures explain the steps implemented or in the process of implementation in this area:

D1. Continuous improvement and development of faculty members through training programs and workshops inside and outside the department, university and country.

D2. Increasing extracurricular activities, such as holding conferences, scientific seminars, and personal and sports creativity, locally, regionally, and internationally.

**D3.** Encouraging faculty members to obtain the highest academic and administrative ranks through promotions.

D4. Providing modern scientific sources and books for the department's library to keep pace with continuous progress.

### 12. Acceptance Criterion

1-Acceptance rates obtained by students in vocational preparatory school.

2-The institute's examinations for the department and the student's desire.

3- Examining the student's fitness and mental ability.

4- Central admission issued by the Ministry of Higher Education.

### 13. The most important sources of information about the program

•The curriculum approved by the Ministry of Higher Education and Scientific Research and its guidelines.

• Decisions and recommendations of the scientific committees at the Southern Technical

University.

- Courses in teaching methods.
- Self-assessment report (SAR) for previous years.
- Description of courses.
- Courses in civil society organizations.
- Conferences, seminars, workshops and panel discussions.
- Relevant state institutions.
- Internet searches for similar experiences.
- Personal experiences
- Labor market needs

### 14. Program Development Plan

1- Adding materials that keep pace with the change and development taking place in various electronic and communications technologies.

2- Deleting and creating old materials while preserving the basics and their continuity.

3- Stimulating and encouraging scientific and practical visits to laboratories, operating

companies and government departments.

4- Developing curricula to keep pace with the times, technology and globalization.

5- Opening specialized branches in the field of measurement, control, and network

maintenance according to the needs of the labor market.

6-Use and develop comprehensive virtual laboratories.

			Program Skills	Out	line										
						Re	quire	d pro	gram	Lear	ning	outco	mes		
Year/Level	Course Code	Course Name	Basic or optional	Kno	wledg	ge		Skil	ls			Ethics			
				A1	A2	A3	A4	B1	B2	<b>B3</b>	<b>B4</b>	<b>C1</b>	C2	<b>C3</b>	<b>C4</b>
		Principles of electronics	Specialized	$\checkmark$	V	V			$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
		Digital circuits	Specialized	V	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	
The First		Electrical circuits	Specialized	V	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$		
		The workshop	Specialized	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$							
		mathematics	assist	$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$		$\checkmark$		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
		Electronic circuits	Specialized	$\checkmark$	V				$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	
The Second		Microcomputers	Specialized	V	$\checkmark$	$\checkmark$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	
		Telecommunications	Specialized	$\checkmark$	V				$\checkmark$	$\checkmark$				$\checkmark$	$\checkmark$

		Specialized	$\checkmark$	$\checkmark$		 	$\checkmark$		$\checkmark$	$\checkmark$
	<b>Control systems</b>									
		General			 	 		 		$\checkmark$
	English language (2)									

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

# **Course Description Form**

### 1. Course Name:

### Measurement and control devices

2. Course Code:

### 3. Semester / Year:

The first stage: quarterly...there are mainly quarterly subjects only, and they end with

the end of the semester, which are (human rights,

and computers) and replaces these two subjects in the second semester (occupational safety

and the English language).

The second stage: Annual.... There are semester subjects in this system for the first

semester (PLC, and the English language), and they are solved.

The place of these two subjects in the second semester (control and computers)

4. Description Preparation Date:5/10/2023

This description was prepared by the committee placed in the electronics department 5. Available Attendance Forms:

In-person + electronic + integrated6. Number of Credit Hours (Total) / Number of Units (Total)

120 hours annually. 4 hours per week / 120 units

7. Course administrator's name (mention all, if more than one name)Name:1-Muhsin Jabbar kabayan.....Email: <a href="muhsin.alamery@stu.edu.iq">muhsin.alamery@stu.edu.iq</a>2- Iqbal Hanoon Essig.....Email: <a href="mulsin.iqbal.hanoon@stu.edu.iq">iqbal.hanoon@stu.edu.iq</a>

8. Course Objectives

1- Teaching the student the concept of measuring devices and the conditions for indicating

them and teaching them.

2-Devices for measuring various electrical quantities, both electronic and digital.

3- Measuring pressure and temperature with electrical and non-electrical devices.

Element	s of power transformers, their types, and their use in measuring bridges.
Elemen	ts of registration and environmental visa.
0	
9. 1ea	aching and Learning Strategies
	- Education strategies:
	Teaching strategies are the methods and approaches followed by the
	professor in communicating educational goals to students. Below are some
	of the teaching strategies:
	1- Lecture or delivery strategy: In which the professor presents
	information, facts, and other ideas to the students related to the topic at
	hand.
	2- Discussion strategy: In this type of teaching strategy, the professor
	determines the topic that will be discussed in the lecture
	<b>3-</b> Problem-solving strategy: In this strategy, the cognitive environment of
	students is activated through problem-solving activities, through most
	positive processes and activities that stimulate thinking and raise
	motivation to learn.
	4- Project-based learning strategy: This strategy relies on design work that
	requires applied work. Students are assigned an applied project for the
	activity, and they are forced to research, read, and use books and all
	cognitive sources in order to accomplish what is required.
	-Learning strategies:

benefit from the educational material, and the most important strategies are:

1- Conducting daily exams for students before the start of the lecture in order to remember previous lectures and information.

2-One of the best types of learning methods is (studying), through which

the student can memorize any electronic design circuit or law.

3 - Conclusion, that is, teachers can reinforce this strategy by asking

inferential questions after each lecture.

### 10. Course Structure:

### **Digital circuits (first stage)**

Digital C	ircuits (II	ist stage)			
Week	Hours	Required	Unit or subject	Learning	Evaluation
		Learning	name	method	method
		Outcomes			
1	4 hours		eneral idea of numerical		
2	4 hours	1- Teaching the	tems (types and details)	lecture	Oral and
3	4 hours	0	2-Transfer between the		
4	4 hours	student the basics of	numerical systems 3- Logic gates (types,	And the	written tests
5	4 hours		working principle, truth		
5 6	4 hours	logical circuits in	(tables, logical symbol	laboratory	
0 7	4 hours		Iow to connect the logic		
		electronic	es to form logic circuits		
8	4 hours	ciccu onic	Boolean algebra and the		
9	4 hours	computers and how	rule of de-Morgan		
10	4 hours	computers and now	Simplification of logical		
11	4 hours	40	equations using Boolean tebra and the laws of De		
12	4 hours	to	Morgan's laws		
13	4 hours		The design of the logical		
14	4 hours	2- Build simple	gates using NOR and		
15	4 hours		NANDcircuits		
	inours	digital circuits using	8-Ways of writing the		
			quation from truth table		
		Truth tables	(POS, SOP)		
			Karnaugh Map (for two		
		Teaching the	variables, the three		
			variables, the four (variables)		
		student swing	Simplification of logical		
		0	uations using Karnaugh		
		circles	Мар		
			11-Calculations in the		
			binary system (addition,		

			subtraction, subtraction	
		Counters, addition	.(using complements) 12-Logi circuit applications	
		circuits, and	(half adder, full adder, parallel adder circuits)	
		registers.	Binarysubtractorcircuits (half subtractor,full	
			subtractorparallel	
			tractor) circuit using the der circuit by method of	
			1s complements 14-The circuit of digital	
			nparator ( one stage and	
			two stages) 5-The circuit of decoder	
			size of 2:4 ,3:8 and 4:10	
Vacation			second course	
1	4 hours		1-The circuit of encoder size of 4:2, 8:3 and 10:4	
2 3	4 hours		2-Introduction to	
3 4	4 hours		quential logic circuits, a	
5	4 hours		general idea of the Flip Flop, flip flop	
6	4 hours		type (S-R)	
7	4 hours 4 hours		3-The flip flop type J-K	
8	4 hours		nd master slave flip flop 4-The D- flip flop and T	
9	4 hours		flip flop	
10 11	4 hours		-The registers, design of registers, enter the	
11 12	4 hours		information and output	
12	4 hours		from registers	
14	4 hours		he shift register, shift to left, shift to right	
15	4 hours		7-The counter-	
	4 hours		Asynchronous counter	
			8-The synchronous unter- the cycle counter	
			-The multiplexer and its	
			applications The code convertor -the	
			application of code	
			convertor	
			11-Programmable logic array Concepts of	
			programmable logic	
			array(PLA);Concepts of	
			programmable array (logic(PAL	
			-Buffers, Non inverting	
			uffers, inverting buffers,	
			Tri-state buffers, transmission gates	
			13-Introduction to	
			uential logic latches and	
			flip flops, Latches- Edgetriggered flip flop,	
			Flip-flop operating	 

	characteristics, Flip-flop	
	applications	
	4-Introduction To State	
	,Machine Design	
	15-State diagram and	
	State table	

# Electrical circuits and measurements (first stage)

Week	Hours	Required	Unit or subject name	Learning	Evaluation
WEEK	nouis	Learning	Chief of Subject hance	method	method
		-		methou	methou
		Outcomes			
1	4 hours		I-How to use measuring devices Various tools in the		
2	4 hours	The student will be	vorkshop, such as (amphometer,	lecture	Oral and
3	4 hours		oscilloscope, power,).		
3 4	4 hours	able to:	2-How to use caustics - types	And the	written tests
+ 5	4 hours		Irons used in the		
		1- Get to know	orkshop - training on the Samsung	laboratory	
6	4 hours		ironing	labor ator y	
7	4 hours	Magguring devices	program. 3- How to use solder		
8	4 hours	Measuring devices	absorbent caustic – solder		
9	4 hours	1.00 1.1	removing tools such as Jordan		
10	4 hours	different and their	absorbent (Soldering Sucker), Wire Lime		
11	4 hours		Remover (Old Remover),		
12	4 hours	uses	raining on some of its operating		
13			uipment on the printed board, the caustics used in soldering		
	4 hours	2- Get to know	he integrated electronic circuit -		
14	4 hours		ect proficiency in IC soldering - how		
15	4 hours	Printed electronic	emove the electronic lighting doses nd remove them from the circuit.		
			ifferent printed electronic circuits -		
		boards and dealing	arning how to perforate them and		
		boards and dearing	call various electronic components on them.		
			-The different types of resistors		
		with her	here the material the resistors are		
			made of - the capacity that each resistance can withstand -		
		3- Being able to	low to read resistor values using		
			methods		
		build various	Various – variable resistors and Special (VDR, PTC, NTC)		
			And how to check it.		
		electronic circuits	6- Make a circuit to connect the		
			resistors to straight		
		on	ke a circuit to connect the resistors		
		0 m	to		
		Printed board and	Parallelism ke a circuit to connect the resistors		
			to		
		Term here t	eries and parallel within a circuit		
		Learn how to	The different types of expanders		
			here is the type of insulator used? panels and the voltage they bear -		
		examine and test it.	ling capacitor values using different		
			hods - How to check capacitors and		
			rs to replace them - Making circuits to connect capacitors to		
			to connect cupacitors to		

		as narallal and mined connectivity
		es, parallel, and mixed connectivity On the printed board with the
		examination.
		8-Different types of keys d in electronic devices and methods
		esting them - the current they can
		withstand
		Each key - use each type. 9-Types of fuses used in
		9-1 ypes of fuses used in ronic circuits - types and diameters
		of wires used in fuses
		- The current that each type can withstand -
		How to repair fuses.
		10-Different types of quasi
		Connectors (Diode, transistor, etc.) from
		(Diode, transistor, etc.) from Vhere it is manufactured and the
		materials
		Methods used in its manufacture Number them and find their
		equivalents.
		nspection of faulty semiconductors
		(diode, transistor, etc.) Valid for a group of them.
		12- Integrated Circuits -
		entify the numbering of parties to
		several Types of these circuits - how
		Manufacture of these circuits -
		components
		involved in manufacturing. Showing a scientific film about how
		Electronic components industry
		istors, capacitors, transistors, etc.).
		· How to read electronic maps and e circuits to determine the location
		of the fault
		Its causes.
		The student learned how to design ectronic circuits on the board and
		all the electronic components on it -
		how
		der these components to the board (simple circle).
Vacation		second course
		1- The previous work is
	4 hours	repeated by standing up
1	4 hours	The student designs a more
	4 hours	complex circuit. Examination of semiconductors -
2	4 hours	nsistors and diodes that are faulty
3	4 hours	and suitable for the assembly
4	4 hours	Of which. 3- A field visit to one of the
5		dustrial facilities in the socialist
6	4 hours	sector. 4- Building complex and simple
7	4 hours	ctronic circuits on printed boards
8	4 hours	Learn how to check it and
9	4 hours	Testing it is like a filter circuit. onstruct a half-wave unified circuit
10	4 hours	he printed board and identification
10	4 hours	How to examine and test it.
	4 hours	Construct the full wave circuit on he printed board and learn how to
12	4 hours	inspect and test it.
13		Build a full-wave voltage multiplier
14	4 hours	it on a printed board and identify it
15		How to examine and test it. Construct a circle of clippers on the
	l I	point deca en ele or enppers on the

printed board and identify	
How to inspect and test it.	
9-Using a Zener Diode as a	
voltage regulator circuit	
On the board	
Print and learn how	
Checked and tested.	
10- Construct a transistor	
amplifier circuit	
he printed board and identification	
ow to examine and test it (based on	
actical common emitter amplifier	
circuit.	
11- Construct a two-stage	
amplifier circuit	
Printed board and learn how	
Checked and tested.	
Build a push-pull amplifier circuit	
e printed board and learn how to	
inspect and test it.	
Build an RC Oscillator circuit on a	
ed board and learn how to examine	
and test it.	
14- Build a Hartley circuit on a	
printed board and learn how	
Checked and tested.	
15- Build a circuit with a	
ariable DC voltage supply on the	
printed board	
Learn how to check it and	
Test it.	

	rse Structu ories/elect Hours	are: tronic workshop(f Required Learning Outcomes	irst stage) Unit or subject name	Learning method	Evaluation method
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4 hours 4 hours	The student will be al to: 1- Get to know Measuring devices different and their us 2- Get to know Printed electronic boards and dealing with her	types ustics used in the workshop - training on caustic welding. 3-How to use a soldering on - a soldering iron, such as a soldering iron older sucker), older remover, Training on some electronic nponents and placing them on printed board, caustics used in oldering integrated electronic cuits - the correct method for ldering an IC - how to remove solder from the ends of an ectronic circuit and remove it	lecture And the laboratory	Oral and written tests

and test it.	ctronic circuits - learning how	
	o perforate them and install	
	ious electronic components on	
	them.	
	5-The different types of resistors	
	resistors	
	made of - the capacity that each	
	resistance can withstand -	
	How to read resistor values	
	using methods	
	arious – variable resistors and	
	Special (VDR, PTC, NTC)	
	And how to check it.	
	6- Make a circuit to connect	
	the resistors to	
	straight	
	Make a circuit to connect the	
	resistors to	
	Parallelism	
	Make a circuit to connect	
	the resistors to	
	Series and parallel within a	
	circuit	
	7-The different types of	
	expanders	
	Where is the type of insulator	
	used?	
	panels and the voltage they bear	
	- Reading capacitor values	
	using different methods –	
	How to check capacitors and	
	ways to replace them –	
	Making circuits to connect	
	capacitors to	
	Series, parallel, and mixed	
	connectivity	
	In the printed board with the	
	examination.	
	8-Different types of keys sed in electronic devices and	
	nethods of testing them - the current they can withstand	
	Each key - use each type.	
	9-Types of fuses used in	
	lectronic circuits - types and	
	ameters of wires used in fuses	
	The current that each type can	
	withstand -	
	How to repair fuses.	
	-Files - types - methods	
	amination - uses - identification	
	ures - reading file types that use	
	color codes and numbering.	
	trical transformers - their types	
	-	
	Methods of examining it -	
	determining the type of	
	transformer	
	<ul> <li>Autotransformation – the</li> </ul>	
	difference between	
	Autotransformers and	
	transformers	
	Ordinary.	
	10-Different types of quasi	

		Connectors[Diode, transistor, etc.) fromere it is manufactured and thematerialsethods used in its manufactureNumber them and find theirequivalents.11- Inspection of faultyhiconductors (diode, transistor,etc.)Valid for a group of them.12- Integrated Circuits -entify the numbering of partiesto severalFypes of these circuits -componentsinvolved in manufacturing.13- Showing a scientific filmabout howectronic components industrysistors, capacitors, transistors,etc.).
		14- How to read electronic maps and trace circuits to ermine the location of the fault Its causes. 15- The student learned how lesign electronic circuits on the pard and install the electronic
vacation		components on it - how older these components to the board (simple circle).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4 hours 4 hours	<ul> <li>1- The previous work is repeated by standing up The student designs a more complex circuit.</li> <li>2- Examination of miconductors - transistors and des that are faulty and valid for the assembly Of which.</li> <li>3- A field visit to one of the ustrial facilities in the socialist sector.</li> <li>4- Building complex and simple electronic circuits on printed boards Learn how to check it and esting it is like a filter circuit.</li> <li>5- Construct a half-wave unified circuit</li> <li>On the printed board and identification</li> <li>How to examine and test it.</li> <li>6- Construct the full wave</li> </ul>
		circuit on e printed board and learn how to inspect and test it. 7- Build a full-wave voltage

	hultiplier circuit on a printed ard and learn how to examine and test it. 8- Construct a circle of ppers on the printed board and identify How to inspect and test it. 9-Using a Zener Diode as a voltage regulator circuit On the board Print and learn how Checked and tested. 10- Construct a transistor amplifier circuit On the printed board and identification n how to examine and test it (based on tical common emitter amplifier circuit. 11- Construct a two-stage amplifier circuit Printed board and learn how Checked and learn how Checked and learn how Checked and learn how to inspect and learn how to inspect and learn how to inspect and learn how to circuit and learn how to inspect and learn how to circuit and learn how to circuit and learn how to inspect and learn how to circuit a test it. 14- Build a Hartley circuit a printed board and learn how Checked and learn how to examine and test it. 15- Build a circuit with a riable DC voltage supply on the printed board Learn how to check it and Test it.	
--	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--

### 13. Course Structure:

Electron	Electronics (first stage)						
Week	Hours	Required	Unit or subject name	Learning	Evaluation		
		Learning	-	method	method		
		Outcomes					
1	4 hours		1. Consistenductor the own				
2	4 hours	Introducing the	1- Semiconductor theory- Atomic structure-levels	lecture	Oral and		
3	4 hours		Energy-Crystals-Conduction in				
3 4	4 hours	student to:	Crystals - gap current - how to	And the	written tests		
<b>-</b> 5	4 hours		Move gaps.				
5 6	4 hours	Electronic	2- Grafting-positive crystal type -type N-current negative crystal	laboratory			
			Electrons and gap current	1410 01 4001 9			
7	4 hours	components	-Total resistance.				
8	4 hours	components	3-4- Semiconductor diodes-				
9	4 hours	manufactured from	N connection—Evacuation zone				
10	4 hours		configuration -Barrier Voltage- Power Hill-				
11	4 hours	comiconductors of	Thermal Effects - Duo				
12	4 hours	semiconductors of	Biased-biasForward-biased				
13	4 hours	• •	Inverse-isotropy curves in				
14	4 hours	various types -	orward and reverse directions -				
15	4 hours		crossing current - ephemeral current				
	+ Hours	composition -	Minority carriers – permissive				
			leakage current				
		properties - uses	Breaking voltage - breakdown				
			voltage - is greatest				
		In circles	ward current - greatest reverse urrent - equivalent circuit of the				
			diode.				
		Electronic	5- The diode as a curren				
			hifier - a half-wave unifier - the				
		applications and	ue - the continuous value of the rrent and its calculation - the				
		TT	fective - the output frequency				
		analysis	6- Full-wave unification				
			ng a center-branch transformer				
		Its electronic	ntry combiner - calculating the				
		ns electronic	tinuous and effective values of oltages and currents - output				
		circuits. Giving the	quency. Comparison between				
		circuits. Orving the	half-wave and full-wave				
		student an idea	fication - comparison between				
		student an idea	full-wave unifiers. 7- Filters - filtering using				
		about	plitude - (LC) and (RC) filters -				
		about	tput voltages - ripple - voltage				
			ultipliers - trimming circuits -				
		optoelectronics, its	positive trimming - negative mming - compound trimming -				
			ak-to-peak detector - positive				
		components,	and negative clamps.				
			8-9 - The zener diode – its				
		integrated circuits,	ucture - its symbol - its forward				
			and reverse properties - akdown and breaking voltages -				
		and simplified	er impedance - power tolerance				
			temperature effects - zener				
		applications for an	proximation - constant voltage				
			llation - constant voltage source				

		amplifier	uit - variable capacitance diode and its applications. 10-11- Bipolar transistor –	
		Processes .	ructure - symbol - properties - as - definition (Bdc) - definition	
			(Cdc) - e relationship between them - lefinition of important areas	
			On the characteristic curves. nsistor bias circuits - base bias -	
			emitter bias - collector bias pproximation in the transistor	
			and the equivalent circuit. Transistor characteristic curves prk areas-Definition of Icbo and	
			lceo-Current gain curve-The tionship between Icbo and Icbo	
			13-Transistor bias circuits- Base bias-emitter bias.	
			14-15- The collector's bias Self-biasing back feed – pltage divider bias—practical	
			examples.	
Vacation			second course	
1	4 hours		l- Action points - rest point - applied examples.	
2	4 hours		- The continuous equivalent	
3	4 hours		circuit of the transistor - the	
4	4 hours		continuous load line 3- Using the transistor to	
5	4 hours		amplify small signals - the	
6	4 hours		quivalent alternating circuit -	
7	4 hours		rent gain - voltage gain - power	
8	4 hours		ı ideal approximation - hybrid stants - equivalent circuit using	
9	4 hours		h coefficients - voltage gain -	
10			rrent gain - power gain - input	
11	4 hours		and output resistors - signal	
11	4 hours		mplifiers Small-base market- emitter market.	
12	4 hours		4- Using a transistor to	
13 14	4 hours		regulate	
14	4 hours		ltage-series regulator-parallel	
15	4 hours		regulator - postant voltage source circuit.	
			5- Field effect transistor –	
			structure - MOSFET curve -	
			E-MOSFETD-MOSFET –	
			Wicker Curve- Effort Curves row Vgs, Idss, Vp - Comparison	
			petween BJT, JFET - working	
			theory	
			- FET bias circuits - constant	
			ent source bias - working point lf-bias - FET equivalent circuit -	
			using FET in small signal	
			amplification - comparison	
			ween types of FET - (MOSFET,	
			FET). (BJT)	
			7- Light dependent resistor –	
			tt-emitting diode - photodiode - ototransistor - breakout board	
			Seven - its composition and	
			applications.	

8-9-10-11-12- Controlled silicon modules current (thyristor) - installation ypes - Properties - Theory of ction - Triaks - Dayaks - Their Symbol - Their Properties - Theory of their operation- mparison between thyristors, DACs and TRIACs-Thyristor protection rom a change in voltage, from a change in current). 13-14-15-	
egrated circuits - its meaning - advantages and disadvantages - a comparison between it and iscrete components - an idea ut its manufacture - operational mplifier 741 - its symbol - its ninals - its uses - applications of rational amplifiers - small signal plification - addition of signals - ptraction of signals - examples.	

14. Course Structure:							
Enginee Week	ring and o Hours	electrical drawing Required Learning	(first stage) Unit or subject name	Learning method	Evaluation method		
		Outcomes					
1 2 3	3 hours 3 hours 3 hours	1- Student training On the cor	1- Advantages of computer wing, basic components of the Auto CAD program And turn it on.	lecture	Oral and		
5 4 5	3 hours 3 hours	foundations engineering draw	2- How to activate and run a program	And the	written tests		
6 7	3 hours 3 hours		lide an icon, activate an icon.	laboratory			
8 9	3 hours 3 hours	maps. Train the student	A detailed explanation of the components of a bar Draw				
10 11	3 hours 3 hours	make him able to: a-Using engineer	Tools Bar, Modify Tools Bar, Status Tools Bar				
12 13 14	3 hours 3 hours	drawing equipment tools, understand	CAD program and how to				
14	3 hours 3 hours	maps, and drawing the engineering views projections.	download the types of lines and create lines				
		b-Distinguishing	<ul><li>5- How to draw Line, Circle,</li><li>Arc in their different ways.</li><li>6- How to draw Polygon,</li><li>Rectangle, Multilin, Polyline</li></ul>				

		-	
Vacation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3 hours 3 hours	1-2-3-4- How to draw and create 3D drawings in Auto CAD Electrical symbols, electronic symbols, general appearance 6-Block, Attribute Block,Insert - How to insert electrical and ectronic symbols into the Auto CAD program interface. 8- Connecting electrical and ctronic symbols using lines and practical applications. 9-10-11-12- ticical applications for drawing electrical circuits. 13-14-15- ctical applications for drawing electronic circuits	

# 15. Course Structure:

# Human Rights Chapter One

### Occupational safety, second semester (first stage)

Week	Hours	Required	Unit or subject name	Learning	Evaluation
		Learning	0 0 - ×u×j0000	method	method
		Outcomes		meenou	memou
1	3 hours		1- Human rights - their definitio		
2	3 hours	The nurnese of	their goals	lecture	Oral and
2 3	3 hours	The purpose of	2- The roots of human rights an their development in human		
3 4	3 hours	the rights	history - human rights in ancien	And the	written tests
5	3 hours	article	and medieval times.		
5 6	3 hours	Human: He	3- Human rights in civilizations		
0 7	3 hours	Providing the	Ancient, especially the Wadi civilization		
8	3 hours	possibility of	Mesopotamia.		
9	3 hours		4- Human rights in divine laws,		
10	3 hours	development	with a focus on human rights in Islam.		
10	3 hours	The individual ar	5- Human rights in the Middle A		
11		society	Human rights in doctrines, scho		
12	3 hours	Complete	and political theories - Human rights		
13 14	3 hours	development	On corporations, their		
14	3 hours	uevelopinent	declarations, revolutions, and		
15	3 hours		constitutions (English documen American Revolution - French		
			Revolution - Russian Revolution		
			man rights in contemporary -6		
			modern history - international		
			ognition of human rights since Vorld War I and beyond - the		
			(United Nations)		
			7- Regional recognition of huma		
			rights - the European Conventio on Human Rights 1950 - the		
			American Convention on Humai		
			Rights 1969 - the African Charte		
			on Human Rights 1981 - the Ara		
			Charter on Human Rights 1994. 8- Non-governmental organizat		
			and human rights (Internationa		
			Committee of the Red Cross -		
			Amnesty International - Human Rights Watch)		
			9 National human rights		
			organizations		
			10- Human rights in Iraqi		
			constitutions between theory ar reality		
			11-12- The relationship betwee		
			human rights and		
			Public freedoms: * 1- In the Universal Declaration		
			* 1- In the Universal Declaration Rights		
			Human.		
			* 2- In regional charters and		
			national constitutions.		
			13- Necessary human rights and collective human rights.		
			-Economic, social and cultural		
			nan rights and civil and political		

Vacation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3 hours 3 hours	facts in development - the right to a clean environment - the right to true solidarity 	
-------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------	--

LICCHON	ic circuit	s (second stage)			
Week	Hours	Required	Unit or subject name	Learning	Evaluation
		Learning		method	method
		Outcomes			
1	3 hours		-1-2-3- Class A power		
2	3 hours		amplifiers	lecture	Oral and
3	3 hours	: Definition of	Class B power amplifiers		
4	3 hours		Class C power amplifiers 4- Power equipment	And the	written tests
5	3 hours	the student	5- Using voltage regulators		
6	3 hours	Basic electronic	ariable resistor, Zener diode,	laboratory	
7	3 hours	circuits,	eries and parallel transistor, Darlington		
8	3 hours	methods of	6- Thyristor Ways to turn		
9	3 hours	designing them	h and off the thyristor Ways to		
10	3 hours		n on the gate in an (AC) circuit,		
11	3 hours	Use it in	(DC), pulses, pplications for silicon modules		
12	3 hours	Practical	7-8 - Oscillators and their		
13	3 hours	applications	efinition - back feed and their		
14	3 hours	many.	es, drawing their diagrams and finding the mathematical		
15	3 hours		relationships for the final		
vacation	5 nours		amplification of the system		
, acation			rward gain - back gain - return uit) - conditions of oscillation -		
16	3 hours		mples of oscillator circuits (LC		
17	3 hours		scillator - Hartley oscillator -		
18	3 hours		lbits oscillator - shift oscillator		
10			phase) 9-10-11 - The transistor as		
20	3 hours		a switch - Specifications of its		
20 21	3 hours		operation on the load line - Its		
21	3 hours		response to a rectangular input wave, transformation times -		
22	3 hours		prators and their different types		
23 24	3 hours		(unstable, unstable - bistable)		
24 25	3 hours		Mathematical relationships -		
23 26	3 hours		lector and base resistors - Input and output waveforms, their		
20 27	3 hours		circuits - Their idea - Idea Its		
27	3 hours		ration - protection - overcoming		
28 29	3 hours		ossible distortions in the output signals - pulse width control.		
29 30	3 hours		12-13 – Operationa		
30	3 hours		amplifier - Typical diagram -		
			emplate input - Non-template		
			it - Input impedance - Template mplifier circuit output - Non-		
			nplate amplifier gain - Voltage		
			wer and amplification equation		
			Host - Equation for adding N		
			mber of inputs - Non-template host.		
			4-15 - The inverter collector		
			cuit and the output equation -		
			e non-inverting collector circuit		
			and the output equation - Mathematical examples.		
			16- Subtractor circuit and		
			lculation equations to subtract		
			ut voltages VO=V2-V1 - applied		

	circuit.	
	17- Applications of the	
	operational amplifier - The	
	integrator and its circuit -	
	vation of its equation - Example	
	serting a square wave into the	
	tegrator circuit and finding its	
	put wave - Example - Inserting a	
	ulse wave into the integrator	
	uit and finding the output wave	
	- Example - The effect of the	
	integrator voltage - Solving	
	exercises.	
	18- The comparator - its	
	ircuit - the idea of the work -	
	roducing a triangle wave to the	
	gular input and connecting the	
vacation	n-standard input to ground -	
	roducing a triangle wave to the	
	rmal input and connecting the	
	n-standard input to a positive	
	reference voltage.	
	19- Nonlinear applications	
	of the op-amp - the rectifier	
	mple - the idea of using the op-	
	amp in rectifier circuits - its	
	vantages over circuits without	
	op-amp a comparison between	
	ideal and non-ideal properties	
	he rectifier - the ideal half-wave	
	ectifier circuit - the idea of its	
	rk - the ideal full-wave rectifier	
	circuit - the idea the job.	
	20- Schmidt switch - False	
	nsformation in the comparator	
	and how to prevent it from	
	appening - Example - Schmidt	
	switch circuit, drawing its	
	version properties - Example -	
	roducing a random wave into	
	he Schmidt switch circuit and	
	drawing the output voltage -	
	Solving exercises	
	21- Wave generators using	
	an op-amp - square wave	
	erator - its circuit - derivation of	
	e equation for the frequency of	
	output wave - modulating the	
	uit to give a rectangular wave -	
	example - circuit design.	
	22- Monostable vibrating	
	pulse generator, its circuit -	
	orking idea - drawing waves -	
	rivation of the equation for the	
	utput pulse width - example -	
	circuit design.	
	23- Triangle wave generator	
	ircuit - working idea - drawing	
	res - derivation of the equations	
	for this - derivation of the	
	quency equation for the output	
	wave	
	24- The analog calculator -	
	lesign - solved examples - timer	
	- its construction - diagrams for	
	use in vibrators - equations for	
1 1	alculating pulse width time -	

solved examples.	
25- Effective RC filters –	
eir advantages - properties HPF-LPF-	
atures - Properties - Equations - sponse Curves - Mathematical Examples)	
26- Effective RC filters BSFBPF their advantages-	
properties	
atures - properties - equations - sponse curves - mathematical examples 27- Basic methods for nufacturing integrated circuits	
ngle-crystalline, thin-film and thick-film) 28-29-30- Manufacture of h integrated circuit for an NPN	
transistor - Manufacture of grated resistors and capacitors Manufacture of an integrated ircuit for a simple electronic	
circuit	

17. Cou	rse Structu	are:			
		<i>.</i>			
Microco		(second stage)			
Week	Hours	Required	Unit or subject name	Learning	Evaluation
		Learning		method	method
		Outcomes			
1	3 hours	1- Student training	1- Introducing the abulary of the academic subject		
2	3 hours	On the correct	nd distributing exam grades -	lecture	Oral and
3	3 hours	foundations of	merical systems - the decimal		
4	3 hours		stem - the binary system - the	And the	written tests
5	3 hours	drawing and readin	ctal system - the hexadecimal ystem and its importance for		
6	3 hours	electronic and	icrocomputers - conversions	laboratory	
7	3 hours	electrical maps.	between systems.		
8	3 hours		2- Introducing crocomputers, their types, and		
9	3 hours	Train the student	their relationship to other		
10	3 hours	and make him able	electronic computers.		
11	3 hours	to:	3- Definitions of microcomputer terms:		
12	3 hours	1-Using engineering	-Byte-Nible-Word-Instruction-		
13	3 hours	drawing equipment	gram-Software-Structures-Level		
14	3 hours	and tools,	Languages Higher-low-level languages-		
15	3 hours	understanding map	assembly language-machine		
vacation		and drawing their	language.		
	3 hours	engineering views	4- Microcomputer Irchitecture - block diagram -		
16	3 hours	and projections.	it unit - keyboard - mouse - two		
17	3 hours	2-Distinguishing	es of mouse and a comparison		
18	3 hours	between electronic	between them - input port. 5- Transport system – data		
19	3 hours	components,	carrier - carrier		
20		-	Addresses - lines of		

21	3 hours	reading, projecting	command and control - the		
21 22		reading, projecting	usefulness of each -		
	3 hours	and drawing	Compare them.		
23	3 hours	electrical maps	6- The output unit – the		
24	3 hours	Electronic circuits.	reen - the difference between a nputer screen and a TV screen -		
25	3 hours		the output port.		
26	3 hours		7- Memory - main		
27	3 hours		iemory - read-only memory -		
28			id-write memory - comparison		
	3 hours		veen them - auxiliary memories		
29	3 hours		d the difference between them		
30	3 hours		and main memory.		
			8- The central processing		
			init - the microprocessor - its		
			definition - a block diagram lowing the architecture of the		
			microprocessor - the 8085		
			croprocessor - a diagram of the		
			minals and its block diagram -		
			ata bus buffers - address bus		
			fers and a comparison between		
			them.		
			9- Public Records – Register		
			A (Accumulator) -		
			ithmetic and Logic Unit - Flags Record -		
			5 microprocessor notification -		
			Computational example		
			o determine the status of each		
			flag and its interpretation		
			tatus-Utility of Flags Register.		
			10- The information of the		
			Z-80 microprocessor and its		
			parison with the information of the 8085 microprocessor -		
			arithmetic example - the PC		
			rogram counter, the SP stack		
			nter - the instruction register -		
			he instruction decoder - the		
			control unit.		
			11- Instructions for the		
			8085-Z80 microprocessor -		
			nemonic codes used - machine nguage - comparison between		
			nguage - comparison between nem - how to extract codes in		
			machine language from the		
			instruction table.		
			12- Data transfer group		
			nstructions and their types -		
			olving examples - writing an		
			application program.		
			13- Input and output		
			tructions and their relationship ata transfer group instructions -		
			examples		
			Applied.		
			14- A group of arithmetic		
			nstructions and their types -		
			pplied examples - their use in		
			lifying the digital signal with an		
			applied example.		
			A group of logical instructions		
			their types - applied examples -		
			nd their use in solving digital circuits.		
			15- A group of branching		
			in Brown or promotining	I	

	ns and their types -		
	l and unconditional		
and the	ir dependence on		
	plied examples - the		
	rtance of these		
	writing programs.		
	group of control		
	- their relationship to		
operatir	g keys - and how they		
	ne rest of the previous		
	structions.		
	- Programs for		
	ing mathematical		
	ddition - subtraction -		
-	on - division - what is		
-	dressing and its types		
in the	8085 processor		
	tages of executing		
	ion - the instruction		
	machine cycle - the		
	art for executing an		
	an instruction to store		
	of the accumulator in a		
emory lo	cation, for example) -		
the mice	oprocessor reads data		
	n memory.		
	figure repetition		
	lelay loops - one loop -		
	ree loops - application		
	s for each of them.		
	rating pulses with		
	equency and a known		
luty cycle	compared to pulse		
	that use integrated		
	circuits.		
יים ככ	ctical examples		
	v to exploit time delay		
pps in inc	ustrial and domestic		
	fields.		
22 - IA/mit	e a program for an		
25- WIII			
· · ·	unter - with an applied		
inding co	example.	1	
nding co	example.		
	e a program for a		
24- Wri	e a program for a		
24- Wri	e a program for a imer - with an applied		
24- Wri ntdown t	e a program for a imer - with an applied example.		
24- Wri ntdown 25- Writ	e a program for a imer - with an applied example. e a program for an		
24- Wri ntdown 25- Writ cending/	e a program for a imer - with an applied example. e a program for an descending counter -		
24- Wri ntdown t 25- Writ cending/ with an	e a program for a imer - with an applied example. e a program for an descending counter - applied example.		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 -		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr	e a program for a imer - with an applied example. e a program for an descending counter - applied example.		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 -		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term	e a program for a imer - with an applied example. e a program for an descending counter - applied example. pprocessor 8086 - ons - architecture - hinal diagram.		
24- Wri ntdown f 25- Writ cending/ with an 26- Micr specificat term 27- Type	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - uinal diagram. s of addressing for		
24- Wri ntdown f 25- Writ cending/ with an 26- Micr specificat term 27- Type e 8086 m	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - uinal diagram. s of addressing for hicroprocessor - data		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr specificat term 27- Type te 8086 m transf	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - tinal diagram. s of addressing for hicroprocessor - data er instructions -		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr specificat term 27- Type te 8086 m transf multiplic	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - tinal diagram. s of addressing for ticroprocessor - data er instructions - ation and division		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term 27- Type ie 8086 r transf multiplic struction	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - tinal diagram. s of addressing for ticroprocessor - data er instructions - ation and division s - examples of other		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term 27- Type ie 8086 r transf multiplic struction in	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - tinal diagram. s of addressing for ticroprocessor - data er instructions - ation and division s - examples of other structions.		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term 27- Type ie 8086 r transf multiplic struction in	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - tinal diagram. s of addressing for ticroprocessor - data er instructions - ation and division s - examples of other		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term 27- Type ie 8086 r transf multiplic struction in 28- A con	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - tinal diagram. s of addressing for ticroprocessor - data er instructions - ation and division s - examples of other structions. nparison between		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term 27- Type e 8086 m transf multiplic struction i 28- A con ght-threa	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - hinal diagram. s of addressing for hicroprocessor - data er instructions - ation and division s - examples of other structions. hparison between ded microprocessors		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term 27- Type e 8086 r transf multiplic struction in 28- A con ght-threa (such as	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - ninal diagram. s of addressing for hicroprocessor - data er instructions - ation and division s - examples of other structions. nparison between ded microprocessors he 8085 (Z80) and		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term 27- Type e 8086 r transf multiplic struction in 28- A con ght-threa (such as	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - ninal diagram. s of addressing for nicroprocessor - data er instructions - ation and division s - examples of other structions. nparison between ded microprocessors he 8085 (Z80) and aded ones, such as the		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat tern 27- Type te 8086 n transf multiplic struction in 28- A con ght-threa (such as teen-thre	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - ninal diagram. s of addressing for nicroprocessor - data er instructions - ation and division s - examples of other structions. nparison between ded microprocessors he 8085 (Z80) and aded ones, such as the 8086.		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term 27- Type e 8086 m transf multiplic struction in 28- A con ght-threa (such as teen-thre	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - ninal diagram. s of addressing for nicroprocessor - data er instructions - ation and division s - examples of other structions. nparison between ded microprocessors he 8085 (Z80) and aded ones, such as the 8086. oprocessors with		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term 27- Type e 8086 m transf multiplic struction in 28- A con ght-threa (such as teen-thre	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - ninal diagram. s of addressing for nicroprocessor - data er instructions - ation and division s - examples of other structions. nparison between ded microprocessors he 8085 (Z80) and aded ones, such as the 8086.		
24- Wri ntdown t 25- Writ cending/ with an 26- Micr pecificat term 27- Type te 8086 m transf multiplic struction in 28- A con ght-threa (such as teen-thre 29- Micr ranks and	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - ninal diagram. s of addressing for nicroprocessor - data er instructions - ation and division s - examples of other structions. nparison between ded microprocessors he 8085 (Z80) and aded ones, such as the 8086. oprocessors with their most prominent		
24- Wrintdown f 25- Writt cending/ with an 26- Micr pecificat term 27- Type ie 8086 m transf multiplic struction in 28- A con ght-threa (such as een-three 29- Micr ranks and ecification	e a program for a imer - with an applied example. e a program for an descending counter - applied example. oprocessor 8086 - ons - architecture - ninal diagram. s of addressing for nicroprocessor - data er instructions - ation and division s - examples of other structions. nparison between ded microprocessors he 8085 (Z80) and aded ones, such as the 8086. oprocessors with		

	curriculum vocabulary.	

commu	nications	(second stage)			
Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vacation 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	3 hours 3 hours	<ul> <li>Providing the student with basic information about telecommunications systems.</li> <li>2-Systems and structures of radio, television and telephone systems.</li> <li>3-Methods of transferring information in communications systems, their specifications, features, and the operations that take place on them.</li> </ul>	<ol> <li>1- BSF)-(RC))- (LPF)- (HPF)-(BPF) Filters</li> <li>2-(BSF) - LPF))-(HPF)- (BPF Active filters</li> <li>3- Modulation,types,AM modulation,wave analysis</li> <li>4- Spectrum frequency,power distributed,calculate modulation index</li> <li>5- Types of AM with its spectrum</li> <li>6- Types of modulation used to generate AM</li> <li>7- Detector of AM-disturtion in demodulation circuits- Envelope Detector –</li> <li>Synchronous Detector - ((AGC</li> <li>8- Block diagram for transmiting and receiving AM-sensitivity of receiving .device</li> <li>9- FM modulation-PM modulation-mathematic analysis for modulated waves-modulaion ratio- .frequency deviation</li> <li>10- The width of spectrum frequency for FM and PM</li> <li>11- Types of FM generation- (Secttreo FM)- Stero</li> <li>12- Some types of Detector of FM</li> <li>13- Coding-Sampling- Quantization-coding .transform</li> <li>14- PM-PCM-PPM-PDM and PAM</li> <li>15- Multiplexing) –(FDM) – (TDM)</li> <li>16- PSK-FSK-ASK modulation</li> <li>17- Transmission information- signal to noise ratio-noise</li> <li>18- Mobile-FDMA-TDMA- CDMA</li> </ol>	lecture And the laboratory	Oral and written tests

|--|

19. Course Structure:						
Electron	Electronic measuring devices (second stage)					
Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vacation 16 17	3 hours 3 hours	OutcomesStudent acquisitionSkill in the fieldUse of devicesMeasurementeAnd electricaldifferent.And knowledgeBasic ingredientsfor these devicesAnd howUse itIn the correct wayAnd away from therisks in working on it.And get to knowHow to calibrateMeasuring devicesAnalogueAnd digital. And alsoRecognitionFactors affectingreading accuracy and	1- Metrology - the ternational system of units of neasurement - basic units of easurement - derived units of asurement - decimal multiples and parts of multiples - easurement errors - examples 2- The galvanometer - sensitivity of the galvanometer he final deviation - the kinetic havior - the decay mechanism. Examples 3- Classification of neasuring devices - Indicating ices and the foundations relied on - Types of effective torques - ection torque - Control torque - Decreasing torque 4- Moving coil measuring evices - installation - working nciple - moment equations - – advantages - disadvantages leasuring devices with a moving on - attractive type - repulsive type - installation - working	lecture And the laboratory	Oral and written tests	

		1		
18	3 hours	how	principle - advantages -	
19	3 hours	Device selection	disadvantages. 6- Types of resistors in	
20	3 hours	appropriate to measure	ms of their values - Methods of	
21	3 hours	So that the student can	easuring electrical resistance -	
22		use the devices Different	meter and voltmeter method -	
	3 hours		mmeter device - Series type -	
23	3 hours	measurements after	Parallel type - Examples	
24	3 hours	graduation with a picture	7- The micrometer	
25	3 hours	Correct in	evice for measuring insulation	
26	3 hours	work fields	and high-value resistances -	
<b>2</b> 7		different.	bmponents - electrical circuit diagram - working principle	
	3 hours	umerent.	8- Direct current	
28	3 hours		lges - Whetstone direct current	
29	3 hours		pridge to measure unknown	
30	3 hours		sistance - working principle -	
	3 hours		te of equilibrium - unbalance -	
	5 nours		lerivation of the equilibrium	
			ation for the bridge - examples -	
			double Kelvin bridge	
			9- Direct current meter - resistance in parallel -	
			lerivation of the equation for	
			culating resistance in parallel -	
			nulti-range ammeter - safety	
			asures when using - examples	
			10 - Direct current	
			oltmeter - series resistance -	
			lerivation of the equation for	
			ulating series resistance - multi-	
			ge voltmeter - safety measures when using - examples	
			11- A multimeter – a	
			erential diagram - a circuit for a	
			urrent and voltage meter - a	
			rcuit for a single-range direct	
			irrent, voltage and resistance	
			er - calibration of direct current	
			rices - calibration of voltmeters	
			and ammeters. 12- Wayne bridge to	
			neasure frequency, unbalance	
			ses, how to balance the bridge	
			13- Devices for	
			leasuring alternating current,	
			ctrodynamometer, structures,	
			moment equation	
			14- Mobile steel measuring	
			devices, structures, moment	
			equations, advantages and disadvantages.	
			15- Uniform type measuring	
			ces - full-wave integrator - half-	
			wave integrator - examples.	
			16- T he use of	
			trodynamometers in measuring	
			le-phase power, structures, and	
			he deflection angle equation.	
			17- Frequency scale,	
			compositions and working	
			principle 18- Thermal devices,	
			thermocouple device 0 for	
			easuring non-granular shapes.	
			9- Signal oscilloscope, block	
			diagram, cathode ray diode,	

assembly, screen, factors for	
ecting screens, types of screens,	
optical grid.	
20- Vertical deflection system,	
ctional diagram, input function,	
nuator, vertical amplifier, delay	
ie, function and types of delay	
line.	
21-22- Horizontal deflection	
stem, basic sweep generator,	
ep synchronization, mug sweep,	
horizontal amplifier, signal	
cilloscope figures, passive and	
ctive voltage figures, current	
figures, high voltage figures,	
ajous shapes, phase calculation,	
frequency calculation	
23- The dual-beam signal	
naker, your head is the signal	
keeper.	
24- Electronic measuring	
ices, electronic voltmeter, basic	
transistor circuit.	
25- Considerations for	
psing an analog voltmeter, input	
edance, voltage range, decibels,	
ensitivity, versus tape width,	
measuring current.	
26-27- Digital voltmeter,	
neral specifications, regression	
e, integration type, continuous	
uilibrium type, and successive	
approximation type.	
28-29-30- Simple frequency	
punter, display counters, time	
e, signal processing, measuring	
e expansion of the frequency	
nge of the counter, automatic	
counters and calculators.	

20. Course Structure: Audio and visual devices (second stage)					
Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
1 2	3 hours 3 hours 3 hours	1-: Student education	1- How to use the measuring levices used in the audiology laboratory 2- Identifying the stages	lecture	Oral and

3	3 hours	Fundamentals and	the television set (reading the		
4	3 hours	theory Broadcast talavision	p) and placing the dots on the television set	And the	written tests
5	3 hours	Broadcast television signal with	3-4-5-6The power		
6	3 hours	Providing him with a	supply stage (measuring the	laboratory	
7	3 hours	comprehensive idea of	pply voltage to operate the TV -	·	
8	3 hours	broadcast systems	w to convert it from AC to DC -		
9		Transmission and	lrawing signals at inspection		
	3 hours	reception	oints using an oscilloscope - suring the voltages entering the		
10	3 hours	And regarding the	illator - measuring the voltages		
11	3 hours	stages of the future,	ming out of the power supply -		
12	3 hours	In addition to	awing the signals Out of phase		
13	3 hours	Providing him with	using the oscilloscope		
14	3 hours	information about	Osloscope 7-8- Horizontal deflection		
15	5 110015	video recording.	ase. Measurement of voltages		
			ntering and exiting the phase		
		2. Tasshing the	9-10- The vertical		
		2-: Teaching the	eflection phase measures the		
		student: the principle of broadcast transmission	ltages entering and exiting the		
		Visual and stages	phase 11-12- Drawing the signals		
		Broadcasting offices	ering and exiting the horizontal		
		and	vertical stages using the signal		
		Its international	oscilloscope device		
		systems, and	13- Create an RF stage for		
		Dealing with signal	e stage and measure the input		
		components before	tages and plot the input signals ng a signal oscilloscope device.		
		transmission. Stages of	14- Create an RF stage for		
		the device	the stage and measure the		
		Reception and	utgoing voltages and plot the		
		processing of the	coming signals using a signal		
		received signal	cilloscope and an oscilloscope		
		To be regenerated, signals examined and	device. 15- Make an IF stage for		
		learned	e stage and measure the input		
		Control methods and	tages and plot the input signals		
		Control and	ng a signal oscilloscope device.		
vocation		organization	16- Make an IF phase (for the		
vacation	3 hours	Picture and sound	ase) and measure the outgoing		
	3 hours	information	pltages and plot the incoming		
16	3 hours		hals using a signal oscilloscope.		
17			17- Create an AGC stage		
18	3 hours		for		
19	3 hours		stage and measure the input vol iges and plot the input signals		
20	3 hours		ng a signal oscilloscope device.		
20 21	3 hours		18- Create an AGC phase		
21	3 hours		or the phase and measure the		
22	3 hours		utgoing voltages and plot the		
	3 hours		coming signals using a signal oscilloscope.		
24			19-20- The stage of image		
25	3 hours		ontrol operations, measuring		
26	3 hours		put input voltages and plotting		
27	3 hours		signals entering the stage using		
28	3 hours		a signal oscilloscope and an		
29	3 hours		oscilloscope device.		
29 30	2 110410		21-22- The stage of image trol operations, measuring the		
30			tput voltages of the equipment		
			plotting the signals coming out		
			of the stage using a signal		
			oscilloscope device.		
	1		23-24 - Sound stage,		1

	easuring the input and output oltages of the equipment, and otting the signals using a signal lloscope, an oscilloscope device. 25-26- Color amplifiers, neasuring supply voltages for nput and output, and plotting signals using an oscilloscope. 27-28- How to control the tensity of lighting. Measure the upply voltages for input and put while plotting signals using a signal oscilloscope. 29-30- Identifying modern evices and keeping up with the relopment taking place in them in terms of installation	
--	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--

## 21. Course Structure:

## PLC subject, first semester

# Control systems subject, Chapter Two (second stage)

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
1 2	3 hours 3 hours	The purpose of PLC	1- Introduction	lecture	Oral and

3	3 hours	material	2-3- Sensors with		
4	3 hours		programmable controller(he	And the	written tests
5	3 hours	1-:General objective:	pressure, motion etc)		
6	3 hours	Definition of student	4- Electrical switch, electrica contact	laboratory	
7	3 hours	With Hawakam	5- Introduction of ladder		
8	3 hours	components	language		
9	3 hours	Programmed and how	6- Logic ciruit		
10	3 hours	Programming and uses.	(AND,OR,NOT,etc.) using lad		
11	3 hours	Special objective:- Recognition	language		
12	3 hours	On the controllers	7- Timers and its types- simulation using ladder		
13	3 hours	Digital retractable	language		
14	3 hours	Programmable (PLC)	8- The signal in ladder langu		
15		And how to deal	9- Digital counter in ladder		
10	3 hours	With it and	language with examples.		
		programmed.	10- Example of (changeover		
			circuit) using ladder languag		
			11- Example of traffic light 12- Application example for		
			open and close the door usin		
			motion sensor.		
			13- Operating circuit of singl		
			phase motor by swith (moto		
			starter) using ladder languag		
			14- Operating circuit of three phase motor(delta-star)		
			15-Application		
			example for electrical lift		
			The second choleric		
acation					
16	<u>.</u>		1- Introduction to control		
17	3 hours		systems		
18	3 hours		2- Open-circuit and closed-		
19	3 hours		circuit control systems 3- Converting electrical signa		
20	3 hours	The purpose of the material	into mechanical ones and vic		
21	3 hours	Control systems	versa, converting electrical		
22	3 hours	2-: General goal:	signals into pneumatic ones		
23	3 hours	The student will be	vice versa.		
24	3 hours	able	4- Error sensing devices used		
25	3 hours	Provided that:	control, their types		
26	3 hours	1-Distinguish between different control	lectrical components to -5 control motors - electric -		
27	3 hours	systems.	bickup - timer - switches -		
28	3 hours	2- It occupies a number	pusher - specific switches		
<b>2</b> 9	3 hours	of people	. 6- The four variables		
<b>3</b> 0	3 hours	Devices and machines used in control	(temperature - pressure - flo level measurement) in contr		
	3 hours	systems.	systems		
		3-Deals with control	7- Controlling the switching		
		systems in factories	and off of a single phase		
		and production plants. 4- Establishes and	induction motor using 1-		
		builds some control	electromagnetic pickup B- thyristor-TRIAC)		
		circles.	8- Complementing the applie		
			systems		
		The specific goal: 1-The student	9- Digital systems in control		

understands methods of	10- Methods of measuring	
control in sites	temperature, pressure, flow	
the job.	level	
2-Learn about various	11- The various elements of	
control systems.	pneumatic control systems	
	12- Applied systems in	
	pneumatic control	
	13- Use the analog calculator	
	control	
	14- How to represent digital	
	circuits in control\	
	The use of electronic -15	
	lculators in applied control	
	.systems	

### 1. Course Evaluation

Distribution as follows:

Any subject in which theory and practical are the same, whether in the first or second stage, the distribution of grades is as follows

Example: The first stage

1- Digital Circuits: 50% = 20 practical + 20 theoretical + 10 year's work + final exam 50% = 40 n + 10 n.

2- Electrical Circuits and Measurements 50% = 20 practical + 20 theoretical + 10 year's work + final exam 50% = 40 n + 10 n.

3- Laboratories/electronic workshop Continuous evaluation: 50% electronic workshop

and 50% electrical workshop						
4- The course fee is 50% = the mid-term exam is 30% + the year's work is 20% = the fina						
exam is 50%						
*There are subjects that end with the first sem	ester and begin with another subject					
2. Learning and Teaching Resources						
1- Electrical Technology(Edward Hughes).						
2- Basic Circuit(A.M.Brooks).pergaman press.						
<b>3- Introduction To Electric Circuit</b>						
(M.Romanwltz) John Willey .						
4- Basic Electrical Engineering(Fitzgerald&						
Rlgginbothan).Graw						
1- Programmable Controllers Theory a						
Implementation, Second Edition, by L.						
Bryan & E. A. Bryan, © 1988, 1997						
Industrial Text Company Published						
Industrial Text Company.						
2- MITSUBISHI ELECTRIC, FX-TH						
BEG-E, USER'S MANUAL, Man						
number: JY997D02901 Manual revisi						
E, June 2015.						
التأسيسات الصناعية تأليف : (سلطان حسين جاسم 1-						
عصري)						
D.C Motors speed control By :Servo system						
https://www.academicinfo.net/subject-guides						
https://dcaclab.com/						
http://electrical-engineering-portal.com/						