MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH SCIENTIFIC SUPERVISION AND SCIENTIFIC EVALUATION APPARATUS DIRECTORATE OF QUALITY ASSURANCE AND ACADEMIC ACCREDITATION ACCREDITATION DEPARTMENT

Academic Program and Course Description Guide

Academic Program Description Form

University Name: Southern Technical University.....

Faculty/Institute: Technical Institute of Amara......

Scientific Department: Mechanical Techniques......

Academic or Professional Program Name: Diploma Mechanical Techniques

Final Certificate Name: Diploma Mechanical Techniques

Academic System: quarterly

Description Preparation Date: ۲.۲0/٦/٦

File Completion Date:

1.10/2/10

Signature: Dr. Asaad Kadhim Eqal Head of Department Name: Signature:Dr. Jehad Kadhum Mohammed Scientific Associate Name:

Date: 10, 7, 2025

Date:

The file is checked by:

Department of Quality Assurance and University Performance

Director of the Quality Assurance and University Performance Department:

٣

Date: 0/7/2.25 Signature: Dr. Akram Karim Khader

Approval of the Dean

Introduction:

The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program.

The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work.

In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process.

Concepts and terminology:

<u>Academic Program Description</u>: The academic program description provides a brief summary of its vision, mission and objectives, including an accurate description of the targeted learning outcomes according to specific learning strategies.

<u>Course Description</u>: Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description.

Program Vision: An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable.

Program Mission: Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions.

Program Objectives: They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

<u>Curriculum Structure</u>: All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours.

Learning Outcomes: A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program.

Teaching and learning strategies: They are the strategies used by the faculty members to develop students' teaching and learning, and they are

1. Program Vision

The Department of Mechanics is one of the main departments of specialization, and the department is moving towards the department as the base of technical education and its modern applications, to be an initiative in providing innovative technology and the spirit of competition in cooperation with the complex.

2. Program Mission

The Department of Mechanics adopts a general message based in its general form on the framework of technical education in Iraq, a message that it seeks to achieve every year to highlight the distinction of the department. The general objectives are focused on graduating national technical cadres at a level of education and training capable of absorbing technology systems and supporting the process of technical development to keep pace with rapid global technical developments.

- The special message includes the following: -
 - 1- Using computer and Internet technologies in education and training.
 - 2- Activating the relationship with the private sector in the areas of training.
 - 3- Follow up on the development of training plan curricula and then update laboratories and workshops.
 - 4- Interaction with the labor market and society's needs for qualification and training.

3. Program Objectives

- 1- Embodying the vision, mission and goals of the department, and applying the best educational practices with a focus on ensuring and enhancing quality and performance.
- 2- Preparing specialized cadres capable of serving the community and preparing for the preparation of future specializations.
- 3- Paying attention to intellectual, cultural and professional building through openness to the experiences of other countries.
- 4- Preparing and qualifying specialized technicians to meet the requirements of the labor market in the private and public sectors in the field of mechanics through diversification in learning and teaching methods and training students to apply the acquired knowledge and skills to solve real-world problems.
- 5- The ability to work as a team.
- 6- Know and understand the principles of mechanics.
- 7- Working on various metal working and shaping machines (lathe, milling, welding, etc.).
- 8- Participation and implementation of emergency and periodic maintenance of machines and machines that fall within his jurisdiction.
- 9- Focus on the educational and moral aspect of the student and instill a spirit of dedication, tolerance and commitment.

4. Program Accreditation

nothing

5. Other external influences

- 1- Labor market requirements
- 2- The need of departments and state institutions

6. Program Struc	ture			
Program Structure	Number of Courses	Credit hours	Percentage	Reviews*
Institution Requirements	20	59	100%	Basic course
College Requirements	20	59		
Department Requirements	20	59		
Summer Training	nothing	60 day		
Other				

* This can include notes whether the course is basic or optional.

7. Program I	Descriptio	on		
Year/Level	Course	Course Name	Credit I	Hours
	Code	Course Maine	theoretical	practical
		Manufacturing Processes $\1$	2	2
		Properties of materials\1	2	-
The first		Workshops \1	-	6
stage, the		Engineering Static Mechanics	2	3
first semester		Mathematics \1	2	-
		Engineering Drawing \1	-	3
		Electricity Technology \1	1	2
		English language \1	2	-
The first		Manufacturing Processes \2	2	2
stage, the		Properties of materials\2	2	-
second		Workshops \1	-	6
semester		Engineering Dynamic	2	3

6

	Mechanics		
	Mathematics \2	2	-
	Computer Fundamentals $\setminus 1$	-	2
	Engineering Drawing \1	-	3
	Electricity Technology $\1$	1	2
	Human Rights and Democracy	2	-
	Machinery parts technology	3	-
	Machining Processes	2	2
	Metallurgy	2	2
The second	Specialized Workshops	-	6
stage is the	Graduation Project	-	2
annual	Industrial Drawing	-	3
system	Occupational management and safety	2	-
	English language	2	-
	Computer Fundamentals	_	2

8. Expected learning outcomes of the program Knowledge

- 1- Enabling students to obtain the necessary knowledge in standard specifications
- 2- Understanding and analyzing mechanical theories and knowing all engineering symbols and terminology.
- 3- Conduct design calculations for the parts of the place and know the factors affecting them and how to connect the parts together.
- 4- Writing scientific reports.

Skills

- 1- Knowledge of the mechanical properties of materials.
- 2- Knowledge of the composition, types and uses of metallic and non-metallic materials.
- 3- Drawing simple and complex assembled mechanical parts and drawing

programs such as AutoCAD.

4- Identify the various metal cutting machines, the operations that take place on them, and how to use and maintain them.

Ethics

- 1- Working within one team and spreading the spirit of cooperation.
- 2- Urging students to deal ethically with each other on campus.
- 3- Maintaining and maintaining laboratory equipment and machines.
- 4- Preserving laboratories from fires.

9. Teaching and Learning Strategies

- 1- Theoretical lectures
- 2- Practical lectures
- 3- Homework assignments
- 4- Scientific visits
- 5- Class activities and extra-curricular activities
- 6- Weekly reports
- 7- Electronic lectures
- 8- Graduation project
- 9- Daily exams

10. Evaluation methods

Daily evaluation - written tests - weekly reports - mid-term exam - final exam

11. Faculty

Faculty Members

Academic Rank	Speciali	Speci Requiremen (if applic	nts/Skills	Number of the teaching staff		
	General	Special			Staff	Lecturer
Assistant Professor	Production and metallurgical engineering	Production and minerals			Staff	
assistant teacher	Mechanical Engineering	Applied mechanics			Staff	
assistant teacher	Materials engineering	Materials engineering			Staff	
assistant teacher	general mechanic	Mechanical				Lecturer
assistant teacher	Calculators	Calculators				Lecturer

Professional Development

Mentoring new faculty members

- 1. General courses
- 2. Specialized courses

Professional development of faculty members

- 1. Seminars
- 2. Workshops
- 3. Deposits

12. Acceptance Criterion

- 1- Central admission for the two branches (scientific and vocational) for morning studies.
- **2-** According to the rate and competition.

13. The most important sources of information about the program

- 1- Websites of Iraqi and foreign universities.
- 2- Workshops held by the Ministry of Higher Education in addition to the Ministry's standards.
- **3-** Holding internal courses and workshops is decided by the deanship and the department.
- 4- Adding and deleting materials according to the need of the labor market.
- 5- Virtual library.
- 6- Central Library.

14. Program Development Plan

- 1- Updating the vocabulary of some curricula to keep pace with developments in the labor market.
- 2- Adding new courses.
- **3-** Changing the name of some courses.
- 4- Equipping workshops with new equipment and laboratories.

			Pro	ogram	Skills	Outl	ine								
							Req	uired	progr	am Le	earnin	g outcon	nes		
Year/Level	Cours	Course Name	Basic or	Knov	vledge			Skills	5			Ethics			
	e Code		optional	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	С3	C4
		Manufacturing Processes \1			•						•				•
Ŭ O		Properties of materials\1		•						•				•	
.2023 st stag		Workshops \1		•						•				•	
2022-2023 The first stage		Engineering Static Mechanics			•						٠				•
ŤĒ		Mathematics \1			•						•				•
		Engineering Drawing \1		•						•				•	

	Electricity Technology \1		•				•			•
	English language		•				•			•
	Human Rights and Democracy	•				•			•	
			•				•			•
Ð	Machinery parts technology				•			•		
)23 I stag	Machining Processes				•			•		
2022-2023 e second sta	Metallurgy				•			•		
2022-2023 The second stage	Specialized Workshops				•			•		
L	 Graduation Project	•				•			•	

	Industrial Drawing			•		•		
	Occupational management and safety	•			•		•	
	English language	•			•		•	
	Computer Fundamentals	•			•		•	

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

1. Course Name:

Mathematics 1

2. Course Code:

3. Semester / Year:

Quarterly system

4. Description Preparation Date:

2022/09/22

5. Available Attendance Forms:

My presence only

6. Number of Credit Hours (Total) / Number of Units (Total)

60 hours annually. 2 hours per week

7. Course administrator's name (mention all, if more than one name)

Name:

Email:

8. Course Objectives

Introducing the student to the use of mathematics in other scientific topics and increasing his ability to think logically when solving exercises, as well as increasing his ability to develop and how to link data with his information to obtain a solution to the problem.

9. Teaching and Learning Strategies

1- Theoretical lectures.

- 2- Daily exams.
- 3- Homework assignments.
- 4- Class activities and extra-curricular activities.

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
------	-------	-------------------------------	----------------------------	--------------------	----------------------

first		Determinants and		
second	Th2	their properties, solving simultaneous equations using the determinant method (Cramer).	Theoretical	
third				
fourth	Th2	Differentiation, algebra of derivatives,	Theoretical	The distribution
Fifth		multiple functions		is as follows: 20 marks for
sixth		Trigonometric,		the first
Seventh		logarithmic and exponential		semester exam - 20
eighth	Th2	functions and their derivatives and implicit functions, the chain rule.	Theoretical	marks for the second semester exam - 10
Ninth		Drawing functions,		marks for
tenth		drawing		the year's work - and
eleventh	Th2	trigonometric functions and maximum and minimum limits.	Theoretical	50 marks for the final exam.
twelfth		Physical calculus		
Thirteenth	Th2	applications, velocity and acceleration and engineering calculus applications.	Theoretical	
fourteenth	Th2	Integration, laws,	Theoretical	

Fifteenth	and its relationship to differentiation, definite and indefinite integration.
-----------	---

11.Course Evaluation

The distribution is as follows: 20 marks for the first semester exam - 20 marks for the second semester exam - 10 marks for the year's work - and 50 marks for the final exam.

12.Learning and Teaching Resources

Source:

Calculus

1. Course Name:

Engineering Drawing

2. Course Code:

3. Semester / Year:

yearly

4. Description Preparation Date:

2022/09/22

5. Available Attendance Forms:

My presence only

6. Number of Credit Hours (Total) / Number of Units (Total)

90 hours annually. 3 hours per week

7. Course administrator's name (mention all, if more than one name)

Name: Riyadh jabbar mohan AL-Bazooni

Email: <u>riyadh.jabbar@stu.edu.iq</u>

8. Course Objectives

Objective of the course: Introducing the student to the importance of engineering drawing and its relationship to other engineering subjects - Developing and developing the student's mental and motor abilities in drawing simple and complex shapes and expanding the horizons of his imagination of geometric shapes and assemblies to identify their components, parts, mechanics and principle of operation, organizing the student's thought to develop a specific and sequential strategy for drawing, assembling and disassembling geometric shapes.

9. Teaching and Learning Strategies

- 1- Practical lectures.
- 2- Daily exams.
- 3- Homework.
- 4- Classroom activities and extracurricular activities

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
first	Р3	The importance of engineering	Engineering Drawing	practical	The

		drawing, using the computer (AutoCAD program) for drawing, drawing board sizes, drawing engineering shapes			distribution is as follows: 15 marks for the first semester exam, 15 marks for
second	P3	Graphics modifications, computer drawing aids (AutoCAD program)	Engineering Drawing	practical	the second semester exam, 20 marks for the year's
third	Р3	Types of lines for engineering drawing, engineering operations, setting dimensions	Engineering Drawing	practical	work, and 50 marks for the final exam.
fourth Fifth	- P3	Perspective drawing	Engineering Drawing	practical	
sixth		Projection theory,			
Seventh	P3	drawing simple	Engineering Drawing	practical	
eighth		projections			
Ninth	Р3	Free hand drawing of paintings on waterfalls	Engineering Drawing	practical	
tenth		Principal	Engineering	_	
eleventh	P3	projections, even angle	Drawing	practical	
twelfth		The importance of			
Thirteenth	P3	engineering	Engineering Drawing	practical	
fourteenth		drawing, using the	_		

Fifteenth		computer (AutoCAD program) for drawing, drawing board sizes, drawing geometric shapes			
sixteenth seventeenth	Р3	Draw the main projections with even angles	Engineering Drawing	practical	
eighteenth nineteenth	Р3	Conclusion of the third project from the two projects	Engineering Drawing	practical	
twentieth Twenty one	P3	Inferring perspective from two or three projections	Engineering Drawing	practical	
twenty tow twenty third	P3	Cuts, shapes of cutting lines according to the type of material	Engineering Drawing	practical	
twenty fourth Twenty- fifth	P3	Drawing projections cut from one projection	Engineering Drawing	practical	
twenty- sixth Twenty- seventh	P3	Partially cropped projection drawing	Engineering Drawing	practical	
Twenty- eighth twenty- ninth thirty	P3	Drawing a half-cut projection, drawing zigzag sections	Engineering Drawing	practical	
11.Course E The distri	ibution i	on is as follows: 15 mark mester exam, 20 mark			

the final exam.

12.Learning and Teaching Resources

The authors' methodological book:

- 1- Engineer Hashim Abboud Al-Moussawi (teacher).
- 2- Engineer Youssef Hussein Al-Radi (teacher).

1. Course Name:

Manufacturing processes

2. Course Code:

3. Semester / Year:

Quarterly system

4. Description Preparation Date:

2022/09/22

5. Available Attendance Forms:

My presence only

6. Number of Credit Hours (Total) / Number of Units (Total)

120 hours annually. 4 hours per week

7. Course administrator's name (mention all, if more than one name)

Name: marwa ali hareb

Email: marwah.ali@stu.edu.iq

8. Course Objectives

Graduating an intermediate cadre capable of working in the fields of manufacturing and production to contribute to the following work:

- 1- The ability to analyze processes into operating components.
- 2- Preparing the technological path between production units.
- 3- Preparing operating cards and orders for each unit and each machine, and calculating operating time elements and loading programs for the units.
- 4- Determine the elements of quality control and quality control.
- 5- Conduct preliminary calculations of operating costs.

9. Teaching and Learning Strategies

- 1- Theoretical lectures.
- 2- Practical lectures.

3- Homework assignments.

- 4- Scientific visits.
- 5- Class activities and extra-curricular activities.
- 6- Weekly reports.
- 7- Daily exams.

Week Hours Required Unit or Learning Evaluation

		T againting	an his st	motheri	mathad
		Learning Outcomes	subject name	method	method
first	Th2+p2	Drilling and grinding, types of drills, types of primers, types of primers, how to perform the drilling and grinding process.	Manufacturi ng processes	Theoretical and practical	The distribution is as
second	Th2+p2	Models, their types, wood used in their manufacture, and the conditions that must be met in the model.	Manufacturi ng processes	Theoretical and practical	follows: 20 marks for the theoretical mid- semester exam - 20
third	Th2+p2	Tools and devices used in making the model, box molds, and how to design a simple model.	Manufacturi ng processes	Theoretical and practical	marks for the practical, and the evaluation is 10 marks depending on the student's behavior and attendance - 40 marks for the theoretical end- semester exam and 10 marks for the practical.
fourth	Th2+p2	Plumbing, historical overview, main methods of plumbing (cast casting, sand casting, metal mold casting, other methods of plumbing) Advantages of the plumbing process.	Manufacturi ng processes	Theoretical and practical	
Fifth	Th2+p2	Plumbing sand, plumbing sand specifications, components, plumbing sand, devices used and additives to plumbing sand.	Manufacturi ng processes	Theoretical and practical	

tenth	Th2+p2	Hot pressure welding, including (electrical	Manufacturi ng processes	Theoretical and practical
Ninth	Th2+p2	Welding, foundations of metal welding, clarification of the main methods of welding (pressure welding, electric arc fusion welding, other methods of fusion welding, flash welding and caustic welding), types of welding joints.	Manufacturi ng processes	Theoretical and practical
eighth	Th2+p2	Lost wax plumbing, continuous plumbing, shell plumbing.	Manufacturi ng processes	Theoretical and practical
Seventh	Th2+p2	Casting with metal molds, its types, centrifugal casting, and its types.	Manufacturi ng processes	Theoretical and practical
sixth	Th2+p2	Pulp, its types, pulp sand, mixture ratios and materials added to it, stages of its work (mixing sand and preparing it, making balls, drying it), the benefit of the drying process, ovens or methods of drying balls and their equipment.	Manufacturi ng processes	Theoretical and practical

		resistance welding, including spot and line welding, flash welding), cold pressure welding, pressure welding using explosives, and pressure welding using ultrasonic waves.		
eleventh	Th2+p2	Fusion welding and gas welding, oxy-hydrogen welding and oxy- acetylene welding, types of flame, right-hand welding and left- hand welding, cutting with oxy- acetylene.	Manufacturi ng processes	Theoretical and practical
twelfth	Th2+p2	Arc welding, welding current, direct and reverse polarity method, types of electrodes, packaging of metal electrodes and their types.	Manufacturi ng processes	Theoretical and practical
Thirteenth	Th2+p2	Atomic hydrogen arc welding, arc welding, fusion welding.	Manufacturi ng processes	Theoretical and practical
fourteenth	Th2+p2	Temperature welding, caustic welding (mortar welding, plumbing welding) and some modern types of welding	Manufacturi ng processes	Theoretical and practical

		(laser welding, electron beam welding).				
Fifteenth	Th2+p2	Welding defects, welding tests.	Manufacturii processes			
11.Course H	Evaluation					
- 20 mar student's	ks for the behavior	as follows: 20 marks practical, and the eva and attendance - 40 for the practical.	aluation is 10	marks depen	nding on the	
12.Learning	g and Teac	hing Resources				
1- Introdu	ction to pr	oduction engineerin	g			
Writt	en by – Ha	ssan Hussein Fahmy	y, Jalal Shawqi	i (1966)		
2- Principl	es of meta	l casting				
Tran	slation – D	r. Salah al-Din Muha	ammad al-Mu	hanni		
3- Methods	s of formin	g metals				
Writt	ten by - Dr	. Anwar Abdul Wahi	id (1963).			
4- Manufac	cturing me	thods				
Writt	en by - Dr	. Arif Abu Safia, Dr. A	Abdul Razzaq	Ismail Khao	dr	
5- Ignition	of metals	- technological foun	dations			
Writ	ten by: Ab	del Moneim Akef (1	977).			
6- Principles of milling operations						
		Frutin, translated by	- Muhammad	Abdol Hom	uid Al-Rifai	

1. Course Name:

Machine Parts

2. Course Code:

3. Semester / Year:

yearly

4. Description Preparation Date:

2022/09/22

5. Available Attendance Forms:

My presence only

6. Number of Credit Hours (Total) / Number of Units (Total)

90 hours annually. 3 hours per week

7. Course administrator's name (mention all, if more than one name)

Name: marwa ali hareb

Email: <u>marwah.ali@stu.edu.iq</u>

8. Course Objectives

Objective of the course: machine parts aims to explain the role of mechanical pa through machine System, the relation links them, how to conduct some calculation to design these parts and to specify all factors that are affected

9. Teaching and Learning Strategies

- 1- Theoretical lectures.
- 2- Homework assignments.
- 3- Scientific visits.
- 4- Class activities and extra-curricular activities.
- 5- Daily exams.

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
first		Th3	Review of Strength of Materials	Theoretical	

Second- third	Th3	Riveted Joints. Types of Riveted Joints ,Design of Riveted Joints, Efficiency of Riveted Joints .	Theoretical
Fourth- Fifth	Th3	Welded Joints Types of welding Joints ,Design of welding Joints	Theoretical
Sixth- Seventh	Th3	Screwed Joints, Design of Bolts for Fastening, Design of Bolts for Power Transition.	Theoretical
Eighth- Ninth	Th3	Keyed Joints , Types of Key , Design of Sunk Key .	Theoretical
Tenth- eleventh	Th3	Frictional Clutches, Type of Frictional Clutches, Design of Frictional Clutches.	Theoretical
Twelfth- Thirteenth	Th3	Types of Springs , Design of Springs	Theoretical
Fourteenth- Fifteenth	Th3	Types of Belts, Design of Belts.	Theoretical
Sixteenth- seventeenth	Th3	Design of Shafts	Theoretical
Eighteenth- nineteenth	Th3	Design of Journal Bearings	Theoretical
twentieth	Th3	Selection of Ball Bearings	Theoretical

			1 1	
Twenty one- twenty tow	Th3	Design of Gears by Lewis Equation	Theoretical	
twenty third- twenty fourth	Th3	Gears Trains	Theoretical	
Twenty fifth- Twenty sixth	Th3	Design of Simple Gears Box	Theoretical	
Twenty seventh- Twenty eighth	Th3	Worm Gears	Theoretical	
Twenty ninth- thirty	Th3	Cams	Theoretical	

11.Course Evaluation

The distribution is as follows: 20 marks for the first semester exam - 20 marks for the second semester exam - 10 marks for the year's work evaluation - 50 for the final exam.

12.Learning and Teaching Resources

Curriculum book: MACHINE DESIGN BY R.S.KHURMI AND J.K.GUPTA

1. Course Name:

Metallurgy

2. Course Code:

3. Semester / Year:

yearly

4. Description Preparation Date:

2022/09/22

5. Available Attendance Forms:

My presence only

6. Number of Credit Hours (Total) / Number of Units (Total)

120 hours annually. 4 hours per week

7. Course administrator's name (mention all, if more than one name)

Name: asaad kadhim eqal

Email: asaad.kadhim@stu.edu.iq

8. Course Objectives

Objective of the course: Parts of Metals aims to clarify the role of metallic and ferrous materials such as steel and its alloys, their importance in industry, and knowledge of their crystalline structure and mechanical properties.

9. Teaching and Learning Strategies

- 1- Theoretical lectures.
- 2- Practical lectures
- 3- Homework assignments.
- 4- Scientific visits.
- 5- Class activities and extra-curricular activities.
- 6- Daily exams.
- 7- Weekly reports.

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
first	Th2+p2	Introduction to mineralogy, crystallization, chimeric crystallization, and the effect of cooling rate on the structure of minerals.	Metallurgy	Theoretical and practical	The distribution is as follows: 50 marks for the pursuit - of which 20 marks for the first semester
second	Th2+p2	Installation of metal blocks (solidification of castings) Common	Metallurgy	Theoretical and practical	exam - 10 marks for theory and 10 marks for

		defects in			practical - 20
		castings.			marks for the
third	Th2+p2	Atomic crowding coefficient, crystallographic directions, crystallographic levels, radicalization phenomenon.	Metallurgy	Theoretical and practical	second semester exam - 10 marks for theory and 10 marks for practical - and 10 marks
fourth	Th2+p2	Crystalline, point, linear lattice defects.	Metallurgy	Theoretical and practical	for evaluating the year's work - 50
Fifth	Th2+p2	Flexible forming and plastic forming (sliding, twinning)	Metallurgy	Theoretical and practical	 marks for the final exam - of which 40 One score for a theoretical exam and 10 for a practical exam.
sixth	Th2+p2	Strain hardening, cold forming, hot forming.	Metallurgy	Theoretical and practical	
Seventh	Th2+p2	Recovery, recrystallizati on, crystal growth.	Metallurgy	Theoretical and practical	
eighth	Th2+p2	Tensile, stress-strain curve, fracture, types of fracture, change from ductile fracture to brittle fracture.	Metallurgy	Theoretical and practical	
Ninth	Th2+p2	Fatigue, fatigue mechanism, factors affecting the	Metallurgy	Theoretical and practical	

			1	·	
		fatigue limit,			
		fatigue-			
		resistant			
		materials.			
	Th2+p2	Creep,			
		mechanism of			
		creep			
		occurrence,			
		creep curve,		Theoretical	
tenth		method of	Metallurgy	and practical	
		extracting the		and practical	
		creep limit,			
		creep-			
		resistant			
		materials.			
	Th2+p2	Compound,			
		phase, solid			
		solution,			
		system,			
eleventh		equilibrium,	Metallurgy	Theoretical	
cicventii		alloy	metallargy	and practical	
		formation,			
		mechanical			
		mixture,			
		eutectics.			-
	Th2+p2	Thermal			
		equilibrium			
		diagram for a			
		binary system			
		that is			
		completely			
		dissolved in			
		the liquid and			
		solid states.		Theoretical	
twelfth		Thermal	Metallurgy	and practical	
		equilibrium			
		diagram for a			
		binary system			
		that is			
		completely			
		dissolved in			
		the liquid			
		state and			
		undissolved			

		in the solid			
		state			
		(eutectic).			_
	Th2+p2	Thermal			
		equilibrium			
		diagram for a			
		binary system			
		with			
		complete	Metallurgy	Metallurgy Theoretical and practical	
Thirteenth		solvation in			
		the liquid			
		state and			
		limited			
		solvation in			
		the solid			
		state.			-
	Th2+p2	Thermal	Motollurgy Theoretical		
		equilibrium			
		diagram for a			
		binary system			
		that is			
foundsouth		completely		Theoretical	
fourteenth		dissolved in	Metallurgy	and practical	
		the liquid state and			
		forms a			
		chemical			
		compound			
		when frozen.			
		Iron,			4
	Th2+p2	dissolution of		Theoretical and practical	
Fifteenth		carbon in			
		iron, heat			
		equilibrium			
		diagram for			
		the			
		iron/carbon	Metallurgy		
		system, the			
		most			
		important			
		reactions			
		included in			
		the diagram.			

sixteenth	Th2+p2	Completion of the heat equilibrium diagram for the iron/carbon system.	Metallurgy	Theoretical and practical	
seventeenth	Th2+p2	Austenite formation, mechanism of converting pearlite to austenite.	Metallurgy	Theoretical and practical	
eighteenth	Th2+p2	Austenite transformatio ns with constant temperature and transformatio ns by continuous cooling.	Metallurgy	Theoretical and practical	
nineteenth	Th2+p2	Thermal treatments (annealing, equalization, standardizatio n)	Metallurgy	Theoretical and practical	
twentieth	Th2+p2	Completion of thermal coefficients (standardizati on and revision), sub-zero thermal coefficients, aging.	Metallurgy	Theoretical and practical	

		1	1	
Twenty one	Th2+p2	Surface hardening (carburization of all types and the thermal treatments that follow it) Al-Tahwah, Al-Sanaida.	Metallurgy	Theoretical and practical
twenty tow	Th2+p2	Alloy steel, the effect of alloying elements on the properties of steel.	Metallurgy	Theoretical and practical
twenty third	Th2+p2	Stainless steel, hardened steel.	Metallurgy	Theoretical and practical
twenty fourth	Th2+p2	Cast iron production and its heat treatments.	Metallurgy	Theoretical and practical
Twenty-fifth	Th2+p2	Supplementin g the production of cast iron and its most important types.	Metallurgy	Theoretical and practical

twenty-sixth	Th2+p2	Definition of corrosion, direct and indirect economic costs of corrosion, manifestation s of corrosion, mechanism of corrosion.	Metallurgy	Theoretical and practical	
Twenty- seventh	Th2+p2	Passivity, Faraday's law general corrosion, galvanic corrosion, cavernous corrosion.	Metallurgy	Theoretical and practical	
Twenty- eighth	Th2+p2	Soil corrosion, facultative corrosion, intercrystallin e corrosion, stress corrosion.	Metallurgy	Theoretical and practical	
twenty-ninth	Th2+p2	Optimum choice of material, contour softening, design and operation.	Metallurgy	Theoretical and practical	
thirty	Th2+p2	Corrosion prevention methods.	Metallurgy	Theoretical and practical	

first semester exam - 10 marks for theory and 10 marks for practical - 20 marks

for the second semester exam - 10 marks for theory and 10 marks for practical - and 10 marks for evaluating the year's work - 50 marks for the final exam - of which 40 One score for a theoretical exam and 10 for a practical exam.

12.Learning and Teaching Resources

1- -Engineering Metallurgy (part 1) Higgins (Capright 1973 R.A.H)

2- Metallurgy for Engineering – Rollason

(Third Eddi 1961)

3- Engineering Physical Metallurgy

Prof Y. Lnthin