aladl Ead) g Mad) addail) 3515 g
4o giatl 4585 daalal)

boland) [(ARIN agaall
oalad) bl y g ClSuil) ClLEs Al

oY) Alda jall
dalal Z\,.\ugJﬂ\ ZUN.,@AM

PYTHON LANGUAGE

M.S.c. Haider . J . Swadi
Assistant Teacher
Master of Information Technology

=l) Jada

Python is a high-level, versatile, open-source, interpreted programming
language that supports multiple programming paradigms. These features
have made it one of the most popular and sought-after languages of the
modern era.

Python is a truly general-purpose language, meaning it is not designed for a
single problem but can be adapted to solve a very wide range of
programming challenges. This versatility, coupled with its simplicity and
active community, makes it an indispensable tool in any programmer's
arsenal today.

Gy ptll) Lpdalf Ly gina

Introduction 2 Functions in Python 142
A) dpiad) G gine 3 Value-Returning Functions 163
zaboall b 4 Reference 181
d83gal) 454)) 5
Sl sl g <l ool 6
deadioall panlail) YY) g Adaiay| 7
Ol calal) 8
Introduction to python 10
Python Variable Type 25
Arithmetic Operators in Python 40
Breaking & Suppressing & Formatting 61
IF statement and logical operators 81
Nested Decision Structures &Boolean Variables 108
Repetition Structures 122

Jﬂ
npne

3

ool 5l el

Taaalail) daiall

Sileu 8l 9 < 93¥)

daaiual diatell) cullsd)] g 4aiiy)

G,\M Q\J\.&J!

) palaall Gusall jucasdl)

) pazalaall 8 Allagl) 4S L)

ahaie 0 SUaaDlall (4 53

) gall dadaiial) daal yall

Jilsall 5 eyl s

o) ra selaall Jaall

Al jalias aladial

ulaall cilipalailly &y il anliall Lay

ULl Jal 5 Jlae (A daall & glatl) dalia

Jo¥) £ sau)

Introduction to programming

L) alail) 5 pualaall oda 8 J sl ¢ alad) Cisgd)
Ol el e dadie
cookial 5 o Sl aadtu Al y
Ol (B o siall s pudall G B8 s Ly
adlee alia) elae) aa (sl 4ad a dallaally 21 JAY) 5 JADY) ¢

Input, Processing, and output Introduction to programming
Examples Why Choose Python?
Using Python 458y 10 Compilers and Interpreters lexsal ga
+ Quiz 48l

454y 50 dad8y 50 e)

Introduction to Python Programming

Python is one of the most widely used programming
language known for its simplicity and versatility. It's used in
web development, data science, Al, automation,
cybersecurity, and more. Whether you're a beginner or
experienced, Python is an excellent language to learn due
to its clear syntax and strong community support.

Python was developed by Guido van Rossum.

L e e T P

Nk WL T T

Introduction to Programming with Python

What is Programming?

Programming is the process of writing instructions for a computer or any
other device to perform a specific task. When you write a program, you
define a series of instructions that the device will follow to perform the

task you want.

Programs for Humans...

while music is playing:
Left hand out and up
Right hand out and up
Flip Left hand
Flip Right hand
Left hand to right shoulder
Right hand to left shoulder
Left hand to back of head
Right hand to back of head
Left hand to right hip
Right hand to left hip
Left hand on left bottom
Right hand on right bottom
Wiggle
Wiggle
Jump

Programs for Python...

the clown ran after the car and the car ran into the tent and
the tent fell down on the clown and the car.

Why Choose Python?

1 Easy to Learn

Its syntax is simple and similar to human
language, making it accessible for beginners.

3 Large Community

Thousands of free libraries and resources are
available, providing extensive support.

many-sided

Python can be used for web development, artificial
intelligence, automation, and more.

Cross-Platform

Python works on Windows, macOS, and Linux,
offering flexibility across different operating
systems.

Compilers and Interpreters

1.What is compilers:

A compiler translates the entire program into machine code before execution.
This means that once the program is compiled, it can be executed without

needing the compiler again.

Advantages of a Compiler: Disadvantages:

Faster execution (after e Compilation takes time.
compilation). e Debugging is harder since

Detects all errors before running all errors appear at once.
the program.

Produces an independent

executable file.

Compilers and Interpreters

2.What is Interpreter :

An interpreter reads the code line by line and executes it immediately,
iInstead of converting the entire program at once.

Python is an interpreted language, making it more interactive and easier to debug.

Interpreterr | 6 |

Compilers vs. Interpreters

Interpreter Compiler
Reads the code line by line and executes it Translates the entire program into machine
Immediately, making debugging easier and code before execution, resulting in faster
code more flexible for quick testing. execution after compilation and detecting all

errors before running the program.

Examples: Python, JavaScript, Ruby. Examples: C, C++, Java

input

Oputt

IPO: Input, Processing, Output

1 2
Input Processing
Receiving data from the user or a Performing calculations, logical
file, such as name and age. operations, or transformations on

data, like calculating next year’s,
age.

Output

Displaying the result on the
screen or storing it in a file, such
as a greeting message with the
calculated age.

Semple examples for input , processing and output in python

Input: Get user information
name = input("Enter your name: ")
age = int(input("Enter your age: "))
Output:

Enter your name: Haider
Processing: Calculate next year's age Enter your age: 31

next_year_age = age + 1 Hello, haider! Next year, you will be 32 years old.

Output: Display the result

print("Hello,", name + "! Next year, you will be", next_year _age, "years old.")

Using Python

1. Python in Game Development

Python is used in designing electronic games, including Battlefield 2,
Eve Online, Civilization IV, and World of Tanks. Its versatility and ease
of use make it a popular choice for game developers.

Battlefield 2

One of the popular games designed using Python.

Eve Online

Another well-known game that utilizes Python.

Using Python

2. Python for 3D Programs

pE
Blender

A 3D creation suite
developed using
Python.

M

MAYA

Another program
created using
Python for 3D

design.

>
<

Dropbox

A file hosting
service created
using Python and
other languages.

3. Major Companies Using Python

YAHOO!

Yahoo

Uses Python in various programs
and products.

IBM

Relies on Python for its programs
and private work.

YouTube

Employs Python in its infrastructure
and services.

Python's flexible Applications

Python is not just for beginners; it's used to create large and well-known programs. Its versatility
makes it essential in the programming world and a required skill in the labor market.

Web Development 1

Used in frameworks like Django and Flask.

Data Science
Popular for data analysis and machine learning

Automation 3
Used for scripting and automating tasks.

A & gl

Python Variable Type

: alad) Cisgl)
GOl i g Al I ULl g1 8 clgaladiind 2S5 0) 8) jusiall o ggday Ul Cay ya
CUall agd 3 g ULl) a el JLA) 5 (i yal Lagalasiiasl 488 5 JAaY) 5 4cluball alls Ay 5
sl (B ol (5 galll S il

A"QL“L_AACJ‘“;L“LSM)UD‘;LM OJ.;AM\oJA

Numeric Variables Python Variables Explained
438> 10
Integers Variables Example
Flaots+ Complex Numbers Print Function lexpal 50
+ Quiz 48l Uses of the input function

4ady 50 4383 50 ddall e

Python Variables Explained

Variable: A named piece of memory that can store a .)

value.

Usage: o
Compute an expression's result. o
store that result into a variable, o
and use that variable later in the program. o

Assignment statement: Stores a value into a variable. .Y §

Syntax: o
name = value

A variable that has been given a value can be used in o
expressions.

It 1s a storage space with a distinctive name in which we put data of the same
type for later use. The variable name 1s not repeated, and it 1s also required that
the data 1n the same variable be of the same type, whether it i1s Integer or other.

“Bob” true 35

&l il g1 g3l
- byte 8

ual 220 short 16 n=5
int 32 n=300

long 64 n=698552215522

float 32 n=5.56
double n=52.2566225

Examples of declaring variables
Example 1
Test.py

We will see the result :

var =5 # 5 a8 gvar W\JML_MJ’_ULLQEM

print(var) # »aiall dclia, Liad Lia 5

1
!

!

4"M.r..s,)

Print Function P

is a function used to display text, variables, or any other object on the :The print() function
.output screen

How do we use the print() function?

: 7 salNames=
Age.= 30 / l.print (“I Love Python”) r1un — 1 Love\
”age) Run = : name, “” ~Y :Print(“ Pyth
. aall 2eal eyl 30 — ython
I print(3) 2. print ()
" Run — 3. print ("print (I Love Python)") run —
Run 1. print (3+7) :
print (I Love Python)
NN RN)/

Hello -- Run- 1. print ("Hello World!")
World!

* Print Produces text out on the console.

* Syntax:
print (“Message)
print Expression
 Prints the given text message or expression value on the console, and
moves the cursor down to the next line.

print [teml, Item2, ..., ItemN

* Prints several messages and/or expressions on the same line.

« Examples:

print("hello ,your name")
age=nt(input("Enter your age:"))

print("Next year,you will be", age+1,"years old")

1. It prompts the user to enter
data.

2. It suspends code execution until the
user enters the required data.

3. The data entered by the user 1s stored within
the program itself. You can try the following
code to verify this.

Examples of declaring variables

Example 1

1. name = input ("What 1s your name? \n")

2. print (name)
3. Print (“Hello”+ name)

? Run —

Numeric Variables

Integers 2 Floats

Store whole numbers Store decimal numbers
without a decimal with a decimal point.
point.

Complex Numbers

Store complex numbers with the imaginary number (j).

1

Integers

Integers are numbers we're all know 1t , like 1, 2, 3, -1, -2, and so on. In Python,

we use the int type to represent these numbers.

x=10

print(type(x))
"nt™>
print(type(y))
<'Int"™>

print(type(z))
<'Int"™>

ehaaclass<
sehaaclass
sehaaclass

2 Floats

Decimals are numbers that contain a decimal point, such as 3.14, -2.5, or 0.001. In
Python, we use the float type to represent these numbers.

a=23.14
b=-2.5
c=0.0

print(type(a)) # sebauclass
<'float™
print(type(b)) # selsuclass
<'float™
print(type(c)) # sebauclass
<'float™

3 Complex Numbers

Numbers that consist of a real part and an imaginary part, and are written in the form a + by,
where a 1s the real part, b is the imaginary part, and j is the imaginary unit (the square root

of -1).

d=2+3j
=-1-1j

print(type(d))
<'complex™

print(type(e))
<'complex™

selasaclass
selasaclass

S & gl

Arithmetic Operators in Python

s alad) Laag)

Leilalasdin 5 clelac 408 5 «Dlalaall 038 doale J gl ¢ fly 8 dpbiad) GOllaall & sedas ORI Cay y3
ST ST A e OoUall sac o 3) jaadl el COllaa 5 O lalaal) Gy ol o) (8L LS daa) 8 Aol
el

(Aelu et delu (5 i) lelu B palaall 320

Operator Precedence Arithmetic Operators in Python
The Augmented Assignment Operators =10 Performing Calculations
Examples Floating-Point and Integer Division tes il
+ Quiz 48l

488y 50 438y 50 Audall ey

-~

Python trajrectry;

AL S call wate the trairectry of ¢ises .
tradrectry): (

AAr rast: anf teuncices ball)
disl,);

»)

ov' o frajrectly
ShaRaAr n ¢

Arithmetic Operators in Python

Arithmetic operators are symbols with specific meanings
used in mathematical operations. In Python, these
operators allow us to perform various calculations
efficiently. Understanding these operators is fundamental
to programming as they form the building blocks of
computational logic.

This presentation will explore the different types of
arithmetic operators in Python, how they work, and their
practical applications in coding. We'll also cover operator
precedence and augmented assignment operators to
help you write more efficient code.

Table of operations used in arithmetic operations

a=b =

a3 dad e b dad Caal a+b + Addition
b 4ais g dad o jual a*b & Multiplication
o @ A andi Ladic a%b %
b 4ed

Performing Calculations

Operator= (Assignment Operator)

Symbol: = Example:a=5

Used to assign a value #Here we define a variable

to a variable named 'a' and give it the
value 5

Example: b = a
#Here we define a variable 'b' and give it the same value as variable 'a’

The assignment operator is the foundation of variable manipulation in Python. It allows us
to store values in memory locations that we can reference and modify throughout our
program. When we use the assignment operator, we're telling Python to associate a

specific value with a variable name.

Performing Calculations

Addition and Subtraction Operators

Subtraction (-) Addition (+)

Used to subtract one value from another Used to add values together
a=3 a=3

b=4 b=4

c=a-b #c=-1 c=atb #c=7

Addition and subtraction operators work just as they do in mathematics. They can be used
with integers, floating-point numbers, and even for string concatenation in the case of the
addition operator. These operations form the basis of arithmetic calculations in Python.

Performing Calculations]

Multiplication and Division Operators

o LN
ﬁﬁ} ICH s
Multiplication (*) Division (/) Floor Division (//)
Used to multiply values Used to divide values Divides and removes decimal
part
a=~6 a=3§ q=28
c=a*b #c=30 c=a/b #c=1.6 c=a//b #c=1

Performing Calculations

Modulo Operator

7 Symbol: % </> Example
Returns the remainder a=2y
of division when b=35
wanting a whole c=a%b
number result resultsin #c=3

The modulo operator 1s particularly useful in programming for
determining cyclical patterns, checking divisibility, and handling cases
where you need to work with remainders. It's commonly used in
algorithms that require looping through a fixed range of values
repeatedly.

2. Floating - Point and Integer Division

integr=.. O0(ivion)

Floating-Point Division (/)

é“é : éé “ Returns result as a decimal number (float)
« 10/3=3.3333...
5 /2

e 6/2=3.0
S5/% /2 =2

Integer Division (//)
Returns result as a whole number (int)
- « 10//3=3

e 6//2=73
Note
i Even with float iputs, integer division truncates the

decimal part
« 10.5//2=5.0

3.0perator Precedence

Parentheses ()

(] Highest priority
Exponentiation **
Xl
Second priority
* 1,1, %
Third priority
T, -
T .
Lowest priority

Understanding operator precedence is crucial for writing correct mathematical expressions in Python. When
multiple operators appear in an expression, Python follows these rules to determine the order of operations. For
example, in the expression 10 + 5 * 2, multiplication happens first, resulting in 20, not 30.

[Precedence Examples}

result=10+5*2 # o pall 4y 16V print((6 + 3) - (6 + 3))

print(result) # 20 #Parenthesis have the highest precedence, and
result=(10+5)*2 #) 8O 4 o 6V need to be evaluated first.

The calculation above reads 9 - 9 =0
print(result) # 30

print(100 + 5 * 3)

Multiplication has higher precedence than addition, and
needs to be evaluated first.
The calculation above reads 100 + 15 =115

Augmented Assignment Operators

Description
Add and assign

Subtract and assign

Multiple and assign

Divide and assign

Floor divide and assign

Modulo and assign

Exponentiate and assign

Long Form
X=X+5
X=X-3
Xx=Xx%*4

Xx=x/4
Xx=x//2
Xx=X%3

X=X **2)

Operator

/=

*Ek—

Prythond esssiem python
Example of aumunted assignment operators

cyriall beffore; cepsmments)

++(+== keyword (svinle);

LSl befay'e (/+7)
vallall, + += lulg (ty/cntch));
b

cvile = affiery; copnoments;

(aluce/kerywentis),
and puyailble weoifle);

):
cuile = affter/; connmeonts)

d(terr/+ane_(+=_algma/((2;

conmmentied |, vaticfo/valbue ETSUINH

vaales RELELICERE (x11);

)

5: aumunted assignment operators @
9]

Adv it a Ammunced

Practical Examples of Augmented Operators — SEILEN LT

Initialize Variable B #] addss
Start with x = 10
Add and Assign x /

x += 5 updates x to 15

Subtract and assign
x -= 2 updates x to 8 l

Multiple and assign
X *=3 updates x to 30

multiplees by 3 + (x=3 (# divides 2

Augmented assignment operators provide a more concise way to update variables based on
their current value. They combine an arithmetic operation with assignment in a single step,
making code more readable and efficient. These operators are commonly used in loops,
counters, and accumulation patterns.

i

mytinyhold.com
D EEEETE TR RT

Examples of Augmented Operators

1. Add and Assign (+=)

#b eidl L8 Wl Unary-Plus) 4es Lsaza g & ¢ jiia e ST dad g puriall 8 Lieia g Lin

a=10
b=3
b+=a b =3+(10)= 13
print(b)
=-10 #b)ﬂﬁA\géL@JUnary-Plus_ﬂwwjeicpw}miwa)ﬂﬁd\gw)&
b=3
bi=a Hb = 3+(-10) = -7

print(“b =%, b)

Examples of Augmented Operators

2. Subtract and assign (=)

#b il 8l Unary-Minus) dad L g o5 ¢« jia (pe Sl dagi g psiall 8 Linia g Lia

x =10
=3
b-=x #b=3-(10)=-2
print(b)
#b):\ﬁd\EL@JUnary-MinusJ\@ﬁMjeﬁc)ém@)miwa):\ﬁd\gum}u@
x=-10
b=3
b-=X #b=3-(-10)= +13

print(“b =%, b)

Examples of Augmented Operators

3. Multiple and assign (*=)

x=10
b=3
b *=x #b=3*(10)=30

print(“b =*, b)

Practical Examples of Augmented Operators

Divide and assign (/=)
X /=3 updates x to 3.33333

Floor divide and assign (/=)
X //= 5 updates x to

Modulo and assign (%=)
X %= 2 updates x to 0

Exponential and assign (¥*=)
x **=3 updates x to 1000

Adv it a Ainmunced

\ssignment Operation:

mytinyhold.com
— —m

Examples of Augmented Operators

4. Divide and assign (/=)

/=X #b=3/5=0.6

print(“b =%, b)

Examples of Augmented Operators

5.Floor divide and assign (/=)

X=25

X /=3 #x=x//3=0

print(x)

--- EX 2-----—— e
X=5

b=3

b //= X #b=3//5=0

Examples of Augmented Operators

6. Modulo and assign (%=)

x %=3 Hx=x%3=2

x =10
b=3
b %=x #x=x% 3= 10%3=3

print(“b =%, b)

Examples of Augmented Operators

7. Exponential and assign (**=)

X **=D #x =x **3=125

X *¥*=b #x =x ** 3= 1000

print(“x =%, x)

& £ ga)

Breaking & Suppressing & Formatting

. e\.ﬂ\ aagd)
M; Lalall LJJ;Y\ ¢ A.GM\ L".\\AJ;.A L;A ?S;ﬂ\ cdjﬂ\ ("5_)..,3";) AL}L]\ ;!a; 1| s a4 (“@_0' i '“S w
by) pia) S8 ¢l Al 3 6N 5 G saill ae Jaladll byl

(Aelu et delu (5 i) lelu B palaall 320

Escape Characters Breaking Long Statements into Multiple
dsdy 10 Lines
Formatting Numbers Examples
il 5o
Examples Suppressing the print Function’s Ending
Newline
+ Quiz 448l Examples

3 3

ANANCN ANANCN R U { A

1. Breaking Long Statements into Multiple Lines

Python allows you to break long statements into multiple lines
using parentheses () or backslashes \.

Using Parentheses Using Backslash
result= (10 + 20 + 30 + result=10 + 20 + 30 +\
40 + 50 + 60 + 40 + 50 + 60 +\

70 + 80 + 90) 70+ 80+ 90

print(result) print(result)

1. Using Parentheses ():

It is commonly used to split function calls that contain multiple parameters
or complex arithmetic expressions. For example:

my_list = (
"item1",
"item?2", # listis: ('iteml’, 'item?2’, 'item3’)
"item3"

)

print("listis : " ,my_list) run >

2. Using Parentheses {}:

Used to split long dictionaries and collections. Each key-value pair in the
dictionary or each element in the collection can be placed on a new line:

my_dict = {
"key_one": "value one",
"key two": "value two",
"key_three": "value three"

}
my_set = { # {'key_one': 'value one’, 'key_two': 'value two',
"element one” , 'key_three': 'value three'}
element two", {'element three', 'element two', 'element one'}
"element three"
}

print(my_dict)
print(my_set)

3. Using Backslash \:

using the backslash (\) character at the end of a line to show that the statement extends to
the next line. Here's an example of a Python line break in a string:

EX:
long_string = "This is a very long string that \
spans multiple lines \

for readability.”
print("long string is : " ,long_string) run -

long string is : This is a very long string that spans multiple lines for
readability.

In Python, print() by default outputs its content followed by a newline character, \n,
which moves the cursor to the next line. but The end parameter in the print() function
allows you to control what is printed at the end of the print statement. By default, end is

set to \n.

Example

print("Hello, ", end=
print("World!")

Practical use cases:

1. Print multiple items on the 2. Creating Progress Bars:
same line: end=" can be used to print
end="" multiple symbols on the same
end="’ line to create a progress bar
EXx: effect.

numbers = [1, 2, 3, 4, 9]
for num in numbers:
print(num, end="")

DSl a8

(O OO ~I' OV UThl =i (U N =

[E
o

2. Creating Progress Bars:

acLbll yal (print("*', end=", flush=True))
print(**', end=", flush=True)
print(**', end=", flush=True)
print(**', end=", flush=True)
print(**', end=", flush=True)
print("*', end=", flush=True)
print(**', end=", flush=True)
print("*', end=", flush=True)
print("*', end=", flush=True)
print("*', end=", flush=True)

print('*', end=", flush=True)

DS S il R0l

*
* 3k
% %k %k
* %k %k Xk
%k 3k %k *k %k
% 3k %k %k %k k
% 3k %k 3k %k %k *k
%k 3k %k 3k %k %k %k 3k
%k 3k %k 3k %k 3k *k %k k

%k %k %k %k %k 3k %k 3k *k 3k

An escape character is a character followed by a backslash (\). It tells
the Interpreter that this escape character (sequence) has a special
meaning. For instance, \n is an escape sequence that represents a

newline. When Python encounters this sequence in a string, it
understands that it needs to start a new line.

Escape Sequence & Meaning

1 \<newline> .

Backslash and newline ignored ASCII Formfeed (FF)
;W\ g \n

Backslash (\) ASCI| Linefeed (LF)

\' \r
3 : , 9 :

Single quote (') ASCII Carriage Return (CR)
A \u 10 \t

Double quote (") ASCIl Horizontal Tab (TAB)
5 \a 11 \

ASCII Bell (BEL) ASCII Vertical Tab (VT)
6 \b

ASCII Backspace (BS)

Escape Characters

\n - Newline

Q

Inserts a line break

\t - Tab

Inserts a tab space

\\ - Backslash

Inserts a literal backslash

Escape Characters Example
escape \b to generate ASCI| backspace

s="Hel\blo’

n\# newline print (s)

s="Hello\nPython’ # ASCII Bell character

print (s) s='Hello\a’

Horizontal tab \t print (s)
s='Hello\tPython’ # ignore \

print (s) s = 'This string will not include \

escape backslash \\ backslashes or newline characters.’
s=s = 'The \\character is called backslash’ print (s)
print (s) # form feed

escape single quote \” s= "hello\fworld"
“s="Hello \' Python \' print (s)
print (s) # Octal notation

escape double quote \"” s="\101"
s="Hello \"Python\" " print(s)
print (s) # Hexadecimal notation

s="\x41"

print (s)

It will produce the following output —

This string will not include backslashes or newline characters.
The \character is called backslash

Hello 'Python’
Hello "Python"
1€10

"ello

Hello

Python

Hello Python
hello world

A

A

Using f-strings Using format()

(Python 3.6+) method

Modern, readable Flexible string formatting
approach for string compatible with Python
formatting with embedded 3.0+.

expressions.

oo Using % Operator

Traditional C-style formatting, still supported for backward
compatibility.

) @ New All-Compontations
* -* - u v “ v

Enaitficle Python(

F-String Number Formatting python

define "pi assiggred an 3.14159
ner": {

});

Define Variable

1 }
pi = 3.141592653589793

Create f-string (nf.:)

2 _ | Pi = Pi.14
"Pi: {:.2f}".format(pi)

prin: f-string format'Pi = 3.14,

Result
Pi rounded: 3.14

inaamples: fore
examples:

Inteeager: (92d) vs */ 10

Float(y42f; ¥22/ (+3.14159) 1}

Scientisfic Notation: (y¥e/ y¥e;
Y e- 1000000
Scientiffic Notation: "= 1100000,

Percent (%='= %27% 0.85)

percent (## ¥22f/% "% 0.85))
1

Number Formatting Options

Format

{:.2f}

{.}

{:.2%}

{:e}

Description

2 decimal places

Thousands
separator

Percentage with 2
decimals

Scientific notation

Example
3.14

1,000,000

75.00%

3.14e+00

Format() Method

Define Variable
p1=3.141592653589793

print("the value 1s: {:.21}".format(p1))
print(f "the value 1s: {p1:.41} ")

number=10000000 # add separator {:,}

print(f "the number 1s : {number:,}")

% Operator Formatting

Example:

Percentage = 0.85

Display Result print("the percentage is : {:.1%}".format(p))
Percentage = 85.0 % print(f "the percentage is : {p:.2%}")

output: the percentage is : 85.0%
Apply Formatting

"Pi: %.2f" % pi

Define Variable
Percentage = 0.85

Combining Techniques

L1ime:
<dlat line breaak('{
Abds of the breaking;

,,,,,,,,

FHISENECANTEBENRO S

Combined Example Output

result = (3.14159 + 2.71828 + The resultis: 8.055

1.61803 + 0.57721)
print("The result is: ", end="")
print(f"{result:.3f}")

Best Practices

Combine these techniques for
cleaner, more readable code.
Follow PEP 8 style guidelines.

UAA\A'J\ &MY\

IF statement and logical operators

. el.d\ aagd)

SIS a5 sl aladinly A) (8 Al aalie (Guai s agdl e U <l jleall 5 A8 jaally oSy 35

e Jeladll 408 (—;@A 5 %M\(Variables)) yaziall &\y\ o) ea S UA (Comments) ladesll g (»;@A
Alledy Wze Jalaill 5 (Errors) sUaal)

(et g rai) Glelu 13 palaall 310

Decision Structure Logical operators
4382 10 ,
Boolean Expressions and Relational The if Statement
Operators lgzral 50
Examples The if-else Statement
+ Quiz 448l Examples

dady 50 488y 50 dudall (4)

logical operators

In Python, there are three logical operators. The result of a logical operation
1s a Boolean value, meaning 1t will be either True or False. Logical operators
can be used 1n various programming contexts, such as with more than one
logical expression to produce a final result. The following figure 1llustrates
the logical operators provided by the Python language:

Python Logical Operators
Ryl

Aooun Yy ous X Ails Jb o boo True oy
LAUbL y aud x W Jb 6 hbo False g5y

Ao I dbllig db b Ul doacun]l doud)l gulbo

1. And

2. OR

3. Not

Expression

Value of the Expression

true and false
false and true
false and false

true and true

false
false
false

frue

Expression

Value of the Expression

true or false
false or true
false or false

frue or ftrue

true
true
false

true

Expression

Value of the Expression

not true

not false

false

true

1. And : 3. Not
Print(1==2) #False 1:.[19293] |
Print(1< 2) 4True Print (3 not in 1)
Print (1<3 and 1==2) #False Ol sbutia lda)

- - L x=[1,2,3,4]
Print (1<3 and 1>4) i False_ olalisg (jUa) Lhes0m]
Print (1!=3) #True print(5 not in x)
2.0R:

Print(3==9 or 3==8) #False
Print(3 <9 or 3>9) #True

The if Statement

A conditional statement in Python refers to a decision-making statement
that predicts the conditions that will occur during program execution and
determines the actions to be taken according to certain conditions.

These conditions determine a decision by evaluating multiple expressions that
produce either True or False as the result.

The program needs them to determine what action to take and which statements
to execute 1f the result 1s True or False. Here 1s the general form of a typical
decision-making structure found 1n programming:

The if Statement

If condition true
Condition Condition code

If condition
false

If Statement in python

One of the conditional statements in Python is the if statement.
The "if" statement is written using the if keyword.
The Python programming language provides the following types of if statements:

1-if

2-if...else

1. If Statement

If statement consists of a logical expression followed by one or more
statements as shown below:

if condition :
statement(s)

If the logical expression evaluates to True, the statement block (code) inside the 1f statement 1s
executed. If the logical expression evaluates to False, the if block 1s skipped and program
execution continues.

X,y=10, 100
if x==y:
print('x = y: xis {} and y is {}'.format(x, y))
if x<y:
. : . Output:
print('x < y: xis {} and y is {}'.format(x, y))
ifx>vy: x<y:xis 10 andy is 100
print('x >vy:xis{}andyis {}.format(x, y)) 11 end

print('The end')

Note: In Python, True 1s assigned to any non-empty values, and False 1f they are zero or Null.

We can also use a shortened form of the if statement 1f we only have one statement to
execute, we can put it on the same line as the if statement. Example:

x=10
y= 100
if x <vy:
print("x <y: xis {}and y is {}".format(x, y))
print("x <y:xis {}and yis {}".format(x,y)) «——
you will get an error

grade = 40
if grade >= 50:
print(".zsb sl
if grade < 50:
print(" .l Il

if statement and logical operators

Python allows the use of logical operators with conditional statements to link
conditions together to produce the final result of the condition (if statement).
Note the following example:

x,y,z=100, 10, 0

if x ==100 and y == 10: Output: |
('X is {} andyis {}v (X, y)) x 18: 100 andyls: 10
ifx<=100 orx <200: 100 <=x<200:x1s 100
('100 <=x <200 : x is {}" (x)) z1s 0
1f not z:

(z1s i} " (2))

11- statement

Now, we will look at the dual alternative decision structure, which has two possible paths of
execution—one path 1s taken 1f a condition 1s true, and the other path 1s taken if the condition
1s false. Figure below shows a flowchart for a dual alternative decision structure.

J

if condition:
statement(s)

else: False tempierfoture True
statement(s) i l

print("Nice weather print("A little
we're having.") cold, isn't it?")

Simple Video explaining
the if- else functions

if(red signal)
stop () ;
else

move () ;

temperature = 30 # 4dlise Zl0 4 il 4l oda jpad cliSa,
if temperature < 40:

. . . rade = 50
rint("Nice weather we're having." g
olse: print(8) If grade >= 50:
' int(" 7l)"
print("A little cold, isn't it?") | pr.lnt(S)
print("End of weather report.") e1Se-

pnnt("L.hu\‘) L.\‘u‘")

a=200
b =33
1f b > a:
print("b 1s greater than a")
else:
print("a is greater than b")

In this example a 1s greater than b, so the first condition is not true,
so we go to the else condition and print to screen that "a 1s greater than b".

1. Checking if a number is even or odd

num =17 f# a8)l 1 e S
if num % 2 ==0:
print(f" 2xI{} =55")
else:
print(f* 2=l {} 524")
Output :

A8 VY 22l

2. Determine whether the user is old or not

age =20 H oead) 108 et SIS
if age >=18:

print(" <y saill Sli€ay (Al il ")
else:

print("as Cu geail) liSay Y ¢ juald il)

Decision Structure

decision structures in Python allow your code to make choices and execute different
blocks of instructions based on a variety of conditions. They are the very essence of
creating dynamic and responsive programs.

Decision structures
are divided into
three important

| asgects:

Crafting Complex Conditions with Logical Operators

Python empowers you to combine multiple conditions using logical operators:

1. AND: This operator returns True only if all the conditions it connects are True.
Imagine you have two conditions: the first one the person is over 18 years old and the
second he has a driver's license. In order for him to be allowed to drive, both
conditions must be met:

age = 28

has_id = True

if age >= 18 and has_id:

print("Access granted.")
else:
print("Access denied.")

2. OR: This operator returns True if at least one of the conditions it connects is True. Think
about offering a discount if a customer 1s a student or if they have a loyalty card:

student = False

loyalty = True Imagine you are offering a discount on a

product if the product price is greater than

a stqden't' o loyalty: o $100 or if the customer has a discount coupon:
print("Discount applied. ")
else: price =120
print("No discount available. ") has_coupon = False
if price > 100 or has_coupon:
print("aesll uki)
else:

print("aasll Gk o 1)

3. NOT: Tnhis operator reverses the truth value of a condition. If a condition is True, not

makes it False, and vice versa. For example, checking if a list 1s not empty:

my list = [4, 5, 6]
if not my list == 0:
print(""The list 1s not empty.")
A more Pythonic way:
if my list: # Non-empty lists are considered True 1n a boolean context
print("The list 1s not empty.")

Boolean Expressions and Relational Operators

The expressions that are tested by the if statement is called Boolean
expressions.

A relational operator determines whether a specific relationship exists between
two values. For example, the greater than operator (>) determines whether
value 1s greater than another. The equal to operator (==) determines whether
two values are equal. The Table below lists the relational operators that are
available in Python.one

Boolean Expressions and Relational Operators

Operator Meaning

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

= Equal to

E Not equal to

Boolean Expressions and Relational Operators

Table below shows examples of several Boolean expressions that compare the variables x

and y.
Expression Meaning
X >y s x greater than y?
X <y s X less than y?
X >=y s x greater than or equal to y?
X <=y s X less than or equal to y?
X ==y s x equal to y?
x 1=y s X not equal to y?

Boolean Expressions and Relational Operators

Let’s look at the following example of the 1f
statement:

if sales > 50000: bonus = 500.0

This statement uses the > operator to
determine whether sales 1s greater than 50,000.

If the expression sales > 50000 1s true, the variable AP
bonus 1s assigned 500.0. ‘

If the expression 1s false, however, the assignment bonus = 500.0
False

statement 1s skipped. Figure shows a flowchart for \
this section of code.

v

Boolean Expressions and Relational Operators

The following example conditionally executes a block containing three statements.
Figure below shows a flowchart for this section of code:

if sales > 50000: sales > 50000 Jrue
bonus = 500.0
commission_rate =0.12

print("You met your sales quota!')

< |

commission_rate
= .12

v

print ('You met
your sales quota!')

u.ud\-ul\ &JQMY\

Nested Decision Structures &Boolean Variables

: alal) Cisgl)
DA UKL agd (A (e (sl (8 Aulaiall il puaciall g ALl 1Al Aas) Sl Guda s agd (g (4SS
(Boolean Variables) 4ihaiadl &l juaial agd s if _elif else &l jle aladiul il

(Q&+L§M)u&uo‘)m@\$d.q

o - =

Nested if-elif Statement Nested decision structures
488 10
Boolean Variables Nested if Statement
Using Boolean Variables The if-else Statement el 5o
+ Quiz 48l Examples

454y 50 488y 50 Audall ()

Nested Decision Structures

Nested decision structures involve placing 1f statements inside other if or else clauses.
This technique allows for the sequential evaluation of multiple conditions, where the
inner condition i1s checked only 1f the outer condition 1s true. Nested structures can
include any combination of if, if...else, and elif statements within each other, enabling
the construction of complex logic for decision-making based on several criteria.

Nested if statements 1n Python allow you to have an 1f statement within another 1f

statement. This 1s useful for scenarios where you need to evaluate multiple conditions
in a hierarchical manner.

Imagine a program that determines a ticket price based on a person's age and whether
they are a member or not.

age = 30

member = True
ifage > 18:
if member:
print("The ticket price is $12.")
else:
print("The ticket price is $20.")
else:
if member:
print("The ticket price is $8.")
else:
print("The ticket price is $10.")

@ s i aa

The if-elif-else Statement

The if-elif-else statement in Python 1s a conditional control structure used for making multi-way
decisions . This statement allows for checking multiple conditions in sequence and executing a
specific block of code when one of the conditions is true .

The execution of an if-elif-else statement begins by evaluating the condition in the if clause. If this
condition 1s true, the corresponding block of code is executed, and the rest of the elif and else
conditions are skipped . If the first condition is false, the condition in the first elif clause is
evaluated. If this condition is true, its corresponding block of code is executed, and the remaining
conditions are skipped . There can be any number of elif clauses, and they are evaluated in order
until a true condition 1s found . If none of the conditions in the if or elif clauses are true, the block
of code under the optional else clause 1s executed . If the else clause is not included and none of
the conditions are true, then none of the conditional code blocks are executed, and the program
continues execution from the line following the if-elif-else structure .

@ The following example illustrates how the if-elif-else statement works

number = -5
1f number > 0:
print(""The number 1s positive.")
elif number < 0:
print(""The number 1s negative.")
else:
print("The number 1s zero.")
print("'"This statement will always be executed.")

@I Jla Jdsaa

This Python code example checks the user's age and prints a different
message based on the entered age.

age = int(input(“Enter your age: "))
if age >=18:
print(“you are now signed up!")

elif age < 0:

print(“You haven’t been born yet!")
elif age >=100:

print(“You are too old to sign up")
else:

print(“You must be 18+ to sign up")

@I Jla Jdsaa

This Python code example checks the user's age and prints a different message
Example4
based on the entered age.

age = int(input(“Enter your age: 7))

if age >= 100 :
print(“You are too old to sign up")
elif age >= 18:
print(‘“‘you are now signed up!")
elif age <0:
print(‘““You haven’t been born yet!")

else:
print(“You must be 18+ to sign up")

@I Jla Jdsaa

Nested if-elif Statement J
@ Another example illustrates the use of elif within a nested structure :

num =18
if num < O:
print("The number is negative.")
elif num > 0:
if num <= 10:
print("The number is between 1 and 10.")
elif num > 10 and num <= 20:
print("The number is between 11 and 20.")
else:
print("The number is greater than 20.")
else:
print("The number is zero.")

S s Hisaa

Boolean Variables

 Boolean variable: references one of two values, Trueor False

* Represented by bool data type

Commonly used as flags

* Flag: variable that signals when some
condition exists in a program
* Flag set to False - condition does not exist

* Flag set to True > condition exists

Using Boolean Variables in if, elif, and else Statements

Boolean variables can be used directly as conditions 1n 1if, elif, and else
statements . Since these variables already hold a boolean value (True or False),
there 1s no need for an explicit comparison .

For example, instead of writing if 1s raining == True:, you can simply write 1f
1s_raining: . Similarly, instead of if 1s_admin == False:, you can write if not

1s_admin: . This makes the code more concise and readable.1

Example 6 The following example demonstrates the use of Boolean variables
in conditional statements:

user logged in=True
1s_admin = False

if user logged in:
print("User 1s logged in.")
1f 1s_admin:
print("User is an administrator.")
else:
print("User is not an administrator.")
else:
print("Please log in.")

S s Hisaa

@ Example of reducing nesting using elif

temperature = 25
humidity = 70

if temperature > 30:
if humidity > 60:
print("It's hot and humid.")
else:
print("It's hot and dry.")
elif temperature > 20:
if humidity > 60:
print("It's moderate and humid.")
else:
print("It's moderate and dry.")
else:
print("It's cold.")

S s Hisaa

Example 8 This code can be rewritten using elif to reduce nesting:

temperature = 25
humidity = 70

1f temperature > 30 and humidity > 60:
print("It's hot and humid.")

elif temperature > 30 and humidity <= 60:
print("It's hot and dry.")

elif temperature > 20 and humidity > 60:
print("It's moderate and humid.")

elif temperature > 20 and humidity <= 60:
print("It's moderate and dry.")

else:
print("It's cold.")

S s Hisaa

Call) £ gaa) — aalad) £ ga)

Repetition Structures

. alal) Ciagl)

¢) Sl JSbia aladtio) bl e = yd ¢daa yll & (Repetition Structures) Dl SEl JSULa 4 sedan «,_&LM uﬁ,_\
:\ﬁhtnebe :dme\daﬁu\é\ﬁsﬁc_\my (e da ypd e ol J\)SJ\@?S;:JJO\;\S while 4ala e 3S i)
e\dil.u\ C).CL cﬁhﬂ\wm&s J\Jﬁﬂ'&\jﬁfgr Mlaujc).\SJ.J\ Ailes Y lals ;Lu\z_\sﬁcﬂ «while
ddla (e JS aladiul sy e pandlig range() A s dak s 7 54 for 4dls Jala break , countinue
.while , for, range()

((Aas+ gral) lislu 1B palaal) Baa

Ol £ sau) JS! A il bl £ gyl a
Aula

For Loop Introduction to Repetition Structures
4382 10
Using the break and continue statements Examples
inside a for loop L) oo
Using the range Function with the for Loop While Loop
+ Quiz b8l Examples

iclu? aclu? dal) e

Introduction to Repetition Structures

Let's begin by defining what a repetition structure is. Simply put, it's a programming
construct that allows us to execute a specific block of instructions repeatedly until a
certain condition 1s met or a defined number of iterations 1s completed. Imagine you want
to print the numbers from 1 to 10. Instead of writing the print statement ten times, you can
use a loop to automate this task.

Repetition structures offer us several significant advantages, including
Reduced Code Size: Avoiding the need to write the same instructions over and over
Increased Program Efficiency: Facilitating the organized execution of repetitive tasks.
Improved Code Readability and Maintainability: Making the code clearer and more
logical through the use of loops.

@ s)l Husaa

The while Loop: A Condition-Controlled Loop

The while loop 1s a powerful tool for executing a block of statements as long as a specified condition
remains true. The loop begins by evaluating the condition. If the condition is true, the block of statements
inside the loop is executed. After execution, the condition is evaluated again, and this process continues
until the condition becomes false, at which point the loop terminates, and the program proceeds to the
following loop

General Syntax of a while Loop while condition:

while condition:
Block of statements to be executed as long as the condition is true
statement 1

statement2
4 while condition:

) statements

@ Sl Jamaa

Let's say we want to write a program that prints the numbers from 1 to 5 using
a while loop. We can achieve this as follows:

counter = | i=1
. B #\.JJjld\dﬂ\@fﬁuﬂww\u“)jdwz‘)jﬁdsuﬁ
while counter <=5: fhis g gl ioal S5 Alaa) S5 e s Letielh aiau] Ll
print(counter)
while 1 <= 5:

counter += 1 orint(i)

print("Loop finished") i+=1

@6 syl jamaa

Validating User Input: While loops are often used to repeatedly prompt the
user to enter data until valid input 1s provided.
password =" "
while password!= “haider":
password = input("Enter your password: ")
1f password!= “haider":
print("Incorrect password. Try again.")

print("Password accepted!")

s Jbx Jamaa

Example of using the else statement with the while loop in Python

The else statement can come after the while loop. It runs a code
section when the while loop's condition 1s False.

1=1 # ot © (5ol 5 jraal CulS 135 gl danll dad asd st <l) gall (pas 50 S
leicll Helse Jals 2 sa sal) Acllall el 3 2% o gun Ja il Giaiy al 131y Lule) a8 48lial o5 (ya s
while 1 <5:

print(1)

1+=1
else:

print('This block is executed when the condition return False!")

@ s)l Husaa

How to create an infinite loop

In the following example, we created a loop that continues executing the code placed 1n
1t without stopping.

while 1 == 1:
print('l am stuck!’)

Output:

I am stuck!
I am stuck!
I am stuck!
[am stuck!

s Jbx Jamaa

How to create an infinite loop

In this example, we wrote while True: instead of writing while 1 == 1:and this will also
make the loop continue executing the code placed within it indefinitely.

while True:
print('l am stuck!”)

Output:

I am stuck!
I am stuck!
I am stuck!
I am stuck!

s Jbx Jamaa

Important Notes Regarding the while Loop:

(AVariables used in the condition must be initialized before entering the loop .

It's essential to ensure that the condition will eventually become false within the
loop (or through an external process affecting the condition) to avoid infinite
loops.

@GV Jla jisaa

The for Loop: A Count-Controlled Loop

The for loop differs from the while loop in how it controls the iteration. The for loop is primarily used to
iterate over a sequence of items (such as a list, a string, or a range of numbers) and execute a block of
statements for each item in that sequence.

General Syntax of a for Loop:

for variable in sequence:

Block of statements to be executed for each item in the sequence

statementl
statement2 -

for element 1n sequence:
T statements

In this syntax, variable is a variable that takes on the value of each item in the sequence during each
iteration of the loop. sequence is the collection of items we want to iterate over.

@ Sl Jamaa

<>

Let's assume we have a list of fruits and we want to print each fruit
individually

fruits = ["apple", "banana", "orange"]
for fruit in fruits

print(fruit)
print("All fruits displayed")

In this example, the loop iterates three times, and in each iteration, the variable
fruit takes the value of one of the elements in the fruits list.

s Db Hasaa

Practical examples:

1. Repetition on a list of numbers:
numbers = [1, 2, 3, 4, 5]
for num in numbers:

print(num * 2)

2. Iteration on characters of a string:
message = "Hello"
for char in message:
print(char.upper())
print(char)

3. use a for loop over a collection
days = ["Mon","Tue","Wed","Thu","Fri","Sat","Sun"]
for d in days:

print (d)

@ Sl Jamaa

Practical examples:

3. use a for loop over a collection
colors = ["Red","Blue","Green","Yellow"]
for x in colors:
if x == "Blue":
print(f"My favorite color is:{x}")
else:

print (x)

@ Sl Jamaa

Using the break and continue statements inside a for loop:

The break and continue statements work similarly inside a for loop as they
do inside a while loop. The break statement terminates the loop early, and
the continue statement skips the current iteration and moves to the next.

s Db Hasaa

1. break:
for number in range(10):
if number == 5:
break
print(number)
2. Continue:
for number in range(5):
if number == 2:
continue

print(number)

@ Sl Jamaa

Using the range Function with the for Loop

The range() function is an incredibly useful tool when using a for loop to execute
a specific number of iterations. The range() function creates a sequence of
numbers. It can be used in three main ways:

v'range(stop): Creates a sequence of numbers starting from 0 and ending at
stop - 1.

v'range(start, stop): Creates a sequence of numbers starting from start and
ending at stop - 1.

\/range(start, stop, Step): Creates a sequence of numbers starting from start

and ending at stop - 1, with the increment between each number specified by
step.

@G s Jam e

Examples of Using range() with a for Loop :

Printing numbers from 0 to 4:

1 11 range(5): # Generates numbers 0, 1, 2, 3,4
print(f"The number 1s: {1}")
Printing numbers from 2 to 7:

11n range(2, 7): # Generates numbers 2, 3,4, 5, 6
print(f"The number 1s: {1}")
Print even numbers from 0 to 10:
111 range(0, 10, 2): # Generates numbers 0, 2, 4, 6, 8
print(f"The even number 1s: {1}")

In these examples, the range() function generates a sequence of numbers, and
in each iteration of the for loop, the variable (1, j, k) takes the next value in that
sequence.

@ s Db Ham aa

Examples of Using range() with a for Loop :

Print Countdown from 5 to 1:

for I in range(5, 0, -1):
print(l)

for dalall dda) gy lele Uiy pe 50 1Y (e 83 sa gl Ao) pe Aol o LaSL Licd Lia
adebb & (e g#n pdall 84 30 g Aludall o2 (e 22 Cala s dalal) 85 50 JS
for n in range(1, 6):

print(n)

Lead Ll 48y 23 3 Al puciall Aa (jn ymy Uil A8l i g3 amy

print('n contains:', n)

@ s Db Ham aa

Using the else statement with a For Loop

Python supports an else statement associated with a for loop. If an else
statement 1s used with a for loop, the else statement will be executed
when the loop exhausts the iteration list. Note the following example:

for x 1n range(5,10):
print(x)
else:

print('x 1s not in the range from 5 to 10')

s Jbx Jamaa

SUMMARY

 while loop: Use 1t when you need to repeat a block of code as long as a
certain condition 1s true. Remember to ensure the condition will
eventually become false to avoid infinite loops.

* for loop: Use 1t when you need to 1terate over a sequence of items (like
lists, strings, or the output of range()) and perform an action for each
item.

* range() function: Use 1t within for loops to generate sequences of
numbers, allowing you to control the number of iterations.

@GV Jla jisaa

il £ 5ol — é-um‘ £)

Functions in Python

. el.ﬂ\ JA.QJ\
5Ll ALl daaal i g5 o) sall oL&) AR = 55 3 S a3 la 935 (sl A J)sals Ul iy
Aad aa 5) Jlsall g A an 5 Y A Jhsall G el g Jsall £l S (indentation)
Al Jala Wllss slocal variables)) dalaall &l patiall o geda agads
eledin) 48 # 34 s Alall = Ja 5 JAla (e L) J s sl 451K4) (global variables) dwlall Ol juaiall o sgda agads
e J) 4l
(st grai) el 1 palaal) bas

o =
doda

Local Variables Introduction to Functions
438y 10
Global variables and global constants Void and Value-Returning Functions
Examples Indentation in Python el 5
+ Quiz 448l Examples

iclu iclu) sl ey

Introduction to Functions

A function 1s a block of code that performs a specific task.

Suppose we need to create a program to make a circle and color it. We can create two
functions to solve this problem:

1. function to create a circle.

2. function to color the shape.

Dividing a complex problem into smaller chunks makes our program easy to understand
and reuse.

Create a Function

Let's create our first function.

0:

('Hello World!")

Here, we have created a simple function named greet() that prints Hello World!

p name of the function

1—: def | , greet() .
: print('Hello World!") :

def keyword is used
to create a function l

function body

Note: When writing a function, pay attention to indentation, which are the spaces at the
start of a code line.

In the above code, the print() statement is indented to show 1t's part of the function body,
distinguishing the function's definition from its body.

In the following example, we defined a function called my function
with only one print command. Then, we called it.

my function Lees) Al Cay yaty Lidd Lia
def my function():
print('My first function 1s called')

e &}.4}45\)A;‘)[\ a1y L;"mn'ly_functiQn dlall ele atuly Liad Ly
my_function()

Calling a Function
Let's create our first function.

In the above example, we have declared a function named greet().

def greet():

print('Hello World!")

If we run the above code, we won't get an output.

It's because creating a function doesn't mean we are executing the code inside it. It
means the code 1s there for us to use if we want to.

To use this function, we need to call the function.

Function Call

Example: Python Function Call

def greet():
print(
call the function -

greet()
print(

def greet():
v print('Hello World!")

call the function

greet()

Output print('Outside function')

Working of Python Function

Example**: print document inside function and
calling the function

def hello():

This function greeting the user™""
print("hi ali")

print(hello._ _doc_)
hello()

Void Functions and Value-Returning Functions in Python

In Python, functions are defined using the def keyword, followed by the function's name, a set
of parentheses that may contain parameters, and a colon. The subsequent indented block of
code constitutes the function's body, containing the statements to be executed.

These functions are called by using their name followed by parentheses(), potentially
including arguments that correspond to the defined parameters.

It's important to realize that in Python, every function returns a value, regardless of its apparent
behavior. This return can be explicit, specified through a return statement, or implicit.

This consistent return mechanism distinguishes Python from some other programming
languages where the absence of a return type, often denoted by keywords like "void," signifies
a function that does not return any value.

Void Functions and Value-Returning Functions in Python

In Python, the term "void function" is commonly used to describe a function whose
primary objective 1s to execute a series of actions or produce side effects rather than to
explicitly compute and return a value for immediate use. These functions might include a
return statement, but it will either be used without any accompanying value or omitted
entirely. A defining characteristic of these functions in Python 1s that even when a return
statement 1s absent, or when 1t appears without an expression, the function will implicitly
return a special value known as None. This behavior underscores the principle that all
Python functions yield a return value, even if 1t signifies the absence of a specific result.
The None keyword 1in Python represents this absence of a value or a null value. It 1s a
built-in constant and a singleton object of the type (NoneType). Understanding None 1s
therefore essential to comprehending the behavior of functions that operate like void
functions in Python.

A simple function designed to print a message:

def print message(message):
print(message)

Output:

Message

None.

This demonstrates that even though the print message function doesn't explicitly return anything, it implicitly
%eturnstone. Another example involves a function that uses a return statement without a value to control the
Oow of execution:

def check value(number):
if number < O:
print("Number is negative'") # If check_value(-5) is called, it will print "Number is negative"

and then exit due to the return statement. If we were to call

check_value(5) and then inspect its return value, we would

pI'iIlt("Number 1S non—negative") find it to be None. Check _value(number or -5)
2999999

return

A simple function designed to print a message:

In the following example, we defined a function called get sum. When we call it, we pass
1t two numbers and it returns the sum of them.

Lagran il g la b o583 (aaae Led) jai Leiledin) die get sum Leaw) 412 iy oy Liad Lingf
def get sum(a, b):
"""This method returns the sum of the numbers that you passed in a and b"""

return a + b;

X).uu.d \ Eget_sum() a1l Az Yl L..gﬂ\ © Y Qﬁddﬂ\ e C.a_\ O AL Liad Lia#f
x = get sum(3, 5)

#OA sl S sx il dad e Uil Lia

print(x)

#The default value that is set for a variable 1s called Default Value or Default Argument.

In the following example, we define a function named print language.

Thlis function has a single variable named language and has the text 'English' as its default
value.

Hhad oyl A Lile il Meprint language Lees) Al cay jaty Liad Lia
dadf ey Sl Y A o i pae Ai€ay 5 language ise) Sl (S L]
def print language(language='English'):
print('Your language 1s:', language)

a8 n 3 suprint language() DA elesialy Ui Ua
' #English' 4ied Jain JUIL slanguage O el lSa da
print_language()

4adll) aaprint language() Al ele diul Liad La
#°Arabic' 4ied muaiv JUb s‘language ¢ <l il Arabic'
print_language('Arabic')

Indentation in Python

Indentation: More Than Just Formatting:

It's important to note that indentation in Python isn't just a means of improving readability;
it's an essential part of the language's syntax. Indentation is used to delineate blocks of
code, such as function bodies, loops, and conditional statements.

How Python Uses Indentation to Delineate Code Blocks:

This can be illustrated with examples of how the indentation level determines which
instructions belong in a particular block of code. Example:

def my function(x):

1f x > 5:
print("'x 1s greater than 5") # Part of the if block
y=x%*2 # Still part of the if block
else:
print("x 1s 5 or less") # Part of the else block

print("This line 1s outside the 1f/else block") # Not part of the if/else block

my_function(10)

Practical Examples Showing Correct and Incorrect Indentation:
Provide several examples of code with correct indentation and equivalent examples with
incorrect indentation, showing the resulting errors or unexpected behavior. Example

(Correct):

def print_numbers(n):
foriin range(n):
print(i)

Example (Incorrect - IndentationError):

def print._numbers(n):
foriin range(n):
print(i) # Error: expected an indented block

Example (Incorrect - Logical Error):

def print numbers(n):
for 1 in range(n):

print(1)
print("Loop finished") # Intended to be outside the loop, but might be incorrectly indented

Example: A function that takes a list of names and prints a personalized greeting
for each name.

def greet all(names):
for name 1n names:
greet(name) # Calling the void function 'greet' defined earlier

def greet(person name):
1f person_name:
print(f"Hello, {person name}!")
else:
print("Greeting to nobody!")
student names =["haider","krar","noor","muhammed"|
greet all(student names)

Al @l d) JS3AGUED A ple Siuly o 5855 elan) (e 4aild 22l Y1 allaliy

Python Local Variables

When we declare variables inside a function, these variables will have a local
scope (within the function). We cannot access them outside the function.

These types of variables are called local variables. For example,
def greet():
local variable dagé a3l
message = 'Hello’
print('Local’, message)

greet()
try to access message variable
outside greet() function
print(message)

Output:

Local Hello
NameError: name 'message’ 1s not defined

Here, the message variable is local to the greet() function, so it can
only be accessed within the function.

Global variables and global constants

In Python, a variable declared outside of the function or in global scope 1s known as a global
variable. This means that a global variable can be accessed inside or outside of the function.

Let's see an example of how a global variable is created in Python.
declare global variable

message = 'Hello'

def greet():
declare local variable
print('Local’, message) Local Hello
Global Hello
greet()

print('Global', message)

Local Hello
Global Hello

This time we can access the massage variable from outside of the

greet() function. This 1s because we have created the massage variable as the

global variable.

Summary

There are two main types of functions in Python: void functions and
functions that return a value. Empty functions perform actions or have side

effects and do not return an explicit value, but rather return None
implicitly.

Functions that return a value perform arithmetic or logical operations and
return a specific result using the return statement. The characteristics and

uses of each type are explained with practical examples, and the key
differences between them are highlighted in a brief table.

e AA &yu\!\ — e gaal) £)

Value-Returning Functions

. el.ﬂ\ a3
Al g3 Je 3 a8l g cal w3 jle DA (e Apalall 4Kyl Glas g aladiul cwﬁ@ﬁ&ﬂ\ J) sl Al Cay g2
Ol Lg 4,9»\.;.»\ C'_a\jj LS cmath 3as g Lﬁ dual) JV gl e 38N g crandom B2 (—;‘Jil.u_j A e ?Gj

(QA&+@J&)Q&M:SJ¢M‘SM

s s
duda

Generating Random Numbers Introduction to Value-Returning Functions
4383 10
Writing Your Own Value-Returning Functions Standard Library Functions and the
import Statement (RIS PO
Returning Strings and Boolean Values The math Module
Returning Multiple Values Examples

icls 2 aclu? dal) e

Introduction to Value-Returning Functions

Definition of functions: Programming blocks that perform a specific task and return a
value.

The difference between void functions and return-value functions:
- Void functions: Perform a task without returning a value (e.g., print()).

- Return-value functions: Return a value that can be stored or used (e.g., len(), input())..

Ex :

result = len("Python") #6 x>

age = int(input(“:& yee J320%)) H#asad) dall an)
print(result)

print(age)

Ex1 : Example of a function to add two numbers

u.mﬁj CA.;]AJ\.J
def add(x, y):

return x +vy
sum_numbers = add(10, 5)
print(sum_numbers) #15

Ex2:Example of a function to check if a number is positive
def is_positive(number):
if number > 0:
return True
else:
return False
result = is_positive(-3)
print(result)

Ex1 : Example of a function to add two numbers or calculate a square
e Slaal) e) aead 4l

def calculate(num1, num2=None):
" aa) g dae B b j (RS pany La) Adlall oa ejlé'j"""
if num2 is not None:

return numl + num?2
else:
return num1 ** 2
Al alasial e AT

sum_result = calculate(5, 3)
print(f” The sum of the numbers 5 and 3 is:{sum_result}”)
square_result = calculate(7)
print(f” The square of the number 7 is:{square_result}”)

EX: Write a Python function called calculate square that takes an integer as input and
returns the square of that number.

def calculate square(number):
1 day ya pn iy JAS Baia faae A1l o3a 23l
square = number ** 2

return square

falaaiu Jls
input_number = 5
result = calculate square(input number)

print(f"2221l & «{input number} s4:{result}")

Standard Library Functions and the import Statement

Standard Library: A set of functions built into Python (such as math and random).
- How to import functions:

- Import the entire library:

Ex: Generates a random number between 1 and 10

import random

print(random.randint(1, 10))

To further expand our capabilities, we learned how to import entire modules that contain a
collection of useful functions. For instance, to use advanced mathematical functions, we
can import the math module.

The math Module

Python math module 1s a built-in module that provides various functions and constants to perform the
mathematical operations more accurately.

Additional Code Example Explanation from the math module:

In these examples, we explored some other functions available in the math module such as math.radians()
for converting angles from degrees to radians, math.cos() for calculating the cosine, math.log() for
calculating the natural logarithm, math.exp() for calculating the exponential function, and the
mathematical constant math.pi.

import math

angle in_degrees = 30

angle _in_radians = math.radians(angle_in_degrees)

sin_value = math.sin(angle_in_radians) print('The value of rt (pi) is:", math.pi)
cos_value = math.cos(angle_in_radians)

tan_value = math.tan(angle_in_radians)

orint("For angle", angle_in_degrees, "degrees:")

orint("Sin:", sin_value)

orint("Cos:", cos_value

orint("Tan:", tan_value)

Import a specific function: (math)

import math

number = 16

square_root = math.sgrt(number)

orint(f"The square root of {number} is: {square_root}")
power = math.pow(2, 3)

print(f"2 raised to the power of 3 is: {power}")

Y0 aaall e il 3l sl

result_sqrt = math.sqrt(25)

Print(f” squer the number 25 is:{result_sqrt}”)

Generating Random Numbers

In many applications, we need to introduce an element of randomness.

The random module in Python provides us with powerful tools to generate random
numbers of various types.

- The most important functions in the random library:
randint(a, b): Returns an integer between a and b.
random(): Returns a random number between 0 and 1.
choice(list): Returns a random element from a list.

Comprehensive Example:

import random
Generate a random integer between 1 and 10 (inclusive)
random_integer = random.randint(1, 10)
print(f” Y+ 5V On S sdie maaa d2e: {random_integer}")
Generate a random decimal number between 0.0 and 1.0 (excluding 1.0)
random_float = random.random()
print(f "Random float between 0.0 and 1.0: {random_float}")
Choose a random item from a list
my_list = ["apple", "banana"”, "orange"]
random_item = random.choice(my_list)

print(f "Random item from list: {random_item}“)

Writing Your Own Value-Returning Functions

We've learned how to use built-in functions, but the real power of programming lies in
our ability to write our own functions to perform specific tasks and return results.

Let's write a simple function that calculates the square of a given number:
def calculate_square(number):

"""This function calculates the square of the input number."""

square = number ** 2

return square

result = calculate_square(5)

print(f"The square of 5 is: {result}")

Returning Strings and Boolean Values

The values that functions can return are not limited to numbers. Functions can also return strings
and Boolean values (True or False).

EX:

Let's write a function that checks if a given number is even or odd and returns a Boolean value:
def is_even(number):

"""This function determines if a number is even and returns True or False."""
if number % 2 == 0:
return True

else:

return False

print(f"ls 10 even? {is_even(10)}")

print(f"ls 7 even? {is_even(7)}")

Let's write another function that creates a greeting message based on a
user's name:

def create_greeting(name):
"""This function creates a greeting message with the user's name."""
greeting = f"Hello, {name}!"
return greeting

message = create_greeting("Ali")
print(message)

What is the expected output when running this code?

def create_custom_message(username, event_type):

return f "A new event has been logged for user {username}: {event_type}."

message = create_custom_message("'Khaled", "Login")

print(message) # Output: A new event has been logged for user Khaled: Logged in.

Returning Multiple Values

Python offers great flexibility as a function can return more than one value simultaneously. These
values are typically grouped together in the form of a "tuple".

Code Example Explanation:
Let's write a function that calculates the area and perimeter of a rectangle and returns both values:
def calculate_rectangle properties(length, width):

"""This function calculates the area and perimeter of a rectangle and returns them."""
area = length * width
perimeter = 2 * (length + width)

return area, perimeter

rectangle_area, rectangle perimeter = calculate rectangle properties(5, 10)
print(f"Rectangle area: {rectangle_area}")

print(f"Rectangle perimeter: {rectangle_perimeter}")

A function that returns a comma-separated value (name and age) in a return
statement.

def get_ name_and_age():
name = "" e
age =30

return name, age

person_info = get name_and_age()
print(person_info) #(Ve ') el ai
print(type(person_info)) # > :delb aiaclass 'tuple'>

def data_analysis(data_list):
min_val = min(data_list)
max_val = max(data_list)
average = sum(data_list) / len(data_list)

return min_val, max_val, average

my _data=1[1,5, 2, 8, 3, 4]
min_result, max_result, average _result = data_analysis(my_data)

print(f"Min: {min_result}, Max: {max_result}, Average: {average result}")

Summary

Functions that return a value, using standard library modules through the
import statement, the ability to generate random numbers using the
random module, and leveraging mathematical functions in the math
module are essential tools in Python. Understanding these concepts
enables students to write more efficient and organized programs and
opens up vast opportunities for developing diverse applications. Through
continued practice, writing their own functions, and exploring standard
library modules, students will significantly enhance their programming
skills in Python.

O 0N WD R

T
= O

=
W N

Reference

https://www.py4e.com/lessons/intro#

https://harmash.com/tutorials/python/functions

https://www.programiz.com/python-programming/function

https://www.w3schools.com/

https://www.youtube.com/watch?v= XbYzHS5dg4

https://www.kholoodtechnotes.net/2023/12/python-loop.html

https://realpython.com/python-while-loop/

https://www.programiz.com/python-programming/while-loop

https://allinpython.com/python-math-module-with-example/#mathpowx vy

https://www.cs.fsu.edu/~cop3014p/lectures/ch7/index.html

. https://www.toppr.com/guides/computer-science/introduction-to-python/void-functions-

and-functions-returning-values/
https://www.programiz.com/python-programming/global-local-nonlocal-variables
https://harmash.com/tutorials/python/functions

https://www.py4e.com/lessons/intro
https://harmash.com/tutorials/python/functions
https://www.programiz.com/python-programming/function
https://www.w3schools.com/
https://www.youtube.com/watch?v=_XbYzHS5dg4
https://www.kholoodtechnotes.net/2023/12/python-loop.html
https://realpython.com/python-while-loop/
https://www.programiz.com/python-programming/while-loop
https://allinpython.com/python-math-module-with-example/#mathpowx_y
https://www.cs.fsu.edu/~cop3014p/lectures/ch7/index.html
https://www.toppr.com/guides/computer-science/introduction-to-python/void-functions-and-functions-returning-values/
https://www.toppr.com/guides/computer-science/introduction-to-python/void-functions-and-functions-returning-values/
https://www.programiz.com/python-programming/global-local-nonlocal-variables
https://harmash.com/tutorials/python/functions

	الشريحة 1
	الشريحة 2: دليل البرنامج
	الشريحة 3: محتويات الحقيبة التدريسية
	الشريحة 4: دليل البرنامج
	الشريحة 5
	الشريحة 6: الأدوات والوسائل
	الشريحة 7
	الشريحة 8
	الشريحة 9
	الشريحة 10
	الشريحة 11
	الشريحة 12
	الشريحة 13
	الشريحة 14
	الشريحة 15
	الشريحة 16
	الشريحة 17
	الشريحة 18
	الشريحة 19
	الشريحة 20
	الشريحة 21
	الشريحة 22
	الشريحة 23
	الشريحة 24
	الشريحة 25
	الشريحة 26
	الشريحة 27
	الشريحة 28
	الشريحة 29
	الشريحة 30
	الشريحة 31
	الشريحة 32
	الشريحة 33
	الشريحة 34
	الشريحة 35
	الشريحة 36
	الشريحة 37
	الشريحة 38
	الشريحة 39
	الشريحة 40
	الشريحة 41
	الشريحة 42
	الشريحة 43
	الشريحة 44
	الشريحة 45
	الشريحة 46
	الشريحة 47
	الشريحة 48
	الشريحة 49
	الشريحة 50
	الشريحة 51
	الشريحة 52
	الشريحة 53
	الشريحة 54
	الشريحة 55
	الشريحة 56
	الشريحة 57
	الشريحة 58
	الشريحة 59
	الشريحة 60
	الشريحة 61
	الشريحة 62
	الشريحة 63
	الشريحة 64
	الشريحة 65
	الشريحة 66
	الشريحة 67
	الشريحة 68
	الشريحة 69
	الشريحة 70
	الشريحة 71
	الشريحة 72
	الشريحة 73
	الشريحة 74
	الشريحة 75
	الشريحة 76
	الشريحة 77
	الشريحة 78
	الشريحة 79
	الشريحة 80
	الشريحة 81
	الشريحة 82
	الشريحة 83
	الشريحة 84
	الشريحة 85
	الشريحة 86
	الشريحة 87
	الشريحة 88
	الشريحة 89
	الشريحة 90
	الشريحة 91
	الشريحة 92
	الشريحة 93
	الشريحة 94
	الشريحة 95
	الشريحة 96
	الشريحة 97
	الشريحة 98
	الشريحة 99
	الشريحة 100
	الشريحة 101
	الشريحة 102
	الشريحة 103
	الشريحة 104
	الشريحة 105
	الشريحة 106
	الشريحة 107
	الشريحة 108
	الشريحة 109
	الشريحة 110
	الشريحة 111
	الشريحة 112
	الشريحة 113
	الشريحة 114
	الشريحة 115
	الشريحة 116
	الشريحة 117
	الشريحة 118
	الشريحة 119
	الشريحة 120
	الشريحة 121
	الشريحة 122
	الشريحة 123
	الشريحة 124
	الشريحة 125
	الشريحة 126
	الشريحة 127
	الشريحة 128
	الشريحة 129
	الشريحة 130: Important Notes Regarding the while Loop:
	الشريحة 131
	الشريحة 132
	الشريحة 133
	الشريحة 134
	الشريحة 135
	الشريحة 136
	الشريحة 137
	الشريحة 138
	الشريحة 139
	الشريحة 140: Using the else statement with a For Loop
	الشريحة 141: SUMMARY
	الشريحة 142
	الشريحة 143
	الشريحة 144
	الشريحة 145
	الشريحة 146
	الشريحة 147: Example: Python Function Call
	الشريحة 148: Example**: print document inside function and calling the function
	الشريحة 149
	الشريحة 150
	الشريحة 151: A simple function designed to print a message:
	الشريحة 152: A simple function designed to print a message:
	الشريحة 153: #The default value that is set for a variable is called Default Value or Default Argument.
	الشريحة 154
	الشريحة 155
	الشريحة 156
	الشريحة 157: Example: A function that takes a list of names and prints a personalized greeting for each name.
	الشريحة 158: Python Local Variables
	الشريحة 159: Output: Local Hello NameError: name 'message' is not defined
	الشريحة 160: Global variables and global constants
	الشريحة 161: Local Hello Global Hello
	الشريحة 162: Summary
	الشريحة 163
	الشريحة 164
	الشريحة 165: Ex1 : Example of a function to add two numbers داله لجمع رقمين #
	الشريحة 166: Ex1 : Example of a function to add two numbers or calculate a square داله لجمع رقمين او لحساب مربع #
	الشريحة 167
	الشريحة 168
	الشريحة 169
	الشريحة 170
	الشريحة 171
	الشريحة 172
	الشريحة 173
	الشريحة 174
	الشريحة 175: Let's write another function that creates a greeting message based on a user's name:
	الشريحة 176: What is the expected output when running this code?
	الشريحة 177
	الشريحة 178
	الشريحة 179
	الشريحة 180: Summary
	الشريحة 181: Reference

