
C١

C

Abstract of programming languages
● What’s a program language

● The date and development of programming languages
● Levels of programming languages

Basic essentials for C++ language/ C++ language concepts
● What’s C++ program contains?

● What are the basic files? Simple explanation for basic

program includefiles, that C++
● beginning, development, its location within language:C++

Levels of programming languages

Basic element and tools of C++ language
● Language symbols
● Definitions name

● keywords
● Constant represent
● Variables represent

● Data types in C++, and the represent methods in memory
● char type
● integer type

● real type
● Boolean (logical) type

● Converting between deferent data types

● Expressions types in C++ language, how formulate

expression:
● Arithmetic expression /deferent arithmetic operation and

expression to of arithmetic conversion manner priorities /its

Arithmetic expression in C++ language/deferent examples

● Relational expression/ relational operations and its

priorities/ formulate Relational expression
● Logical expression/ logical operation and its priorities/

formulate Logical expression
● of publicCompound expression/ priorities table

operations/ deferent examples

● Give the primary values of constants and variables
● Spaces and brackets

● Type of comments
● Special tools

 ● minim tools

● Assignment statement, its types/ with explanation

examples
● Arithmetic expression (equation)

● counters, counter types
● deferent images for equations belong to C++ language

● and output functions Formatted Input
● output text

● Output numeric values
● Output Arithmetic expression

● un Formatted Input and output functions

● Control, conditional, and loop statements
● cond. Statement

o Cond. Tools
o If conditional statement

o If…else statement
o Nested conditional

● switch conditional statement
● nested conditional statement

repetition statements
● for loop, Nestedfor

C++/1
++C

Code

Data Show

Laptop

The C++ Programming LanguageBjarne Stroustrup

Quiz

:

• Abstract of programming languages
• What’s a program language
• The date and development of programming languages
• Levels of programming languages

C++

C++

:

• Basic essentials for C++ language/ C++ language concepts

• What’s C++ program contains?
• What are the basic files? Simple explanation for basic files, that C++ program include
• C++ language: beginning, development, its location within Levels of programming languages

C++

:

• Basic element and tools of C++ language

• Language symbols
• Definitions name
• keywords
• Constant represent

• Variables represent

C++

:

● Data types in C++, and the represent methods in memory
● char type
● integer type
● real type
● Boolean (logical) type
● Converting between deferent data types

C++

:

● Expressions types in C++ language, how formulate expression:
● Arithmetic expression /deferent arithmetic operation and its priorities / conversion manner

of arithmetic expression to Arithmetic expression in C++ language/deferent examples

C++

:

● Relational expression/ relational operations and its priorities/ formulate Relational expression
● Logical expression/ logical operation and its priorities/ formulate Logical expression
● Compound expression/ priorities table of public operations/ deferent examples

C++

:

• Give the primary values of constants and variables
• Spaces and brackets
• Type of comments

• Special tools

C++

:

• minim tools

C++

:

• Assignment statement, its types/ with explanation examples
• Arithmetic expression (equation)
• counters, counter types

• deferent images for equations belong to C++ language

C++

:

• Formatted Input and output functions
• Output text
• Output numeric values

C++

:

• Output Arithmetic expression

• Un Formatted Input and output functions

if , if-

else, Nested-ifC++

:

• Control, conditional, and loop statements
• cond. Statement

o Cond. Tools
o If conditional statement
o If…else statement
o Nested conditional

Switch,

Nested-SwitchC++

:

• Switch conditional statement

• Nested conditional statement

for loop

C++

:

• repetition statements

• for loop

Nested for

C++

:

• repetition statements

• Nested for

1
st
 class

Structured Programming

(C++) البرمجة المهيكلة

 استاذ المادة : م.م عباس جخير كاظم

 المعهد التقني / العمارة

LECTURE 1

1. Introduction:

hardware components

Computer is a device capable of performing computations and making

logical decisions at speeds millions and even billions of times faster than

human beings.

Computers process data under the control of sets of instructions called

computer programs.

Programming is the process of writing instructions for a computer in a certain

order to solve a problem.

The computer programs that run on a computer are referred to as software

(SW). While the hard component of it is called hardware (HW).

Developing new software requires written lists of instructions for a computer to

execute. Programmers rarely write in the langauage directly understood by a

computer.

2. Short History:

The following is a short history, just for given a general view of how languages

are arrived:

1954: Fortran.

1957: Cobol.

1958: Algol (Base for Simula).

1958: Lisp.

1961: B1000.

1962: Sketchpad.

1964: Basic.

1967: Simula67.

1968: FLEX.

1970: Pascal (From Algol).

1971: C (From a language called B).

1972: Smalltalk72 (Based on Simula67 and Lisp).

1976: Smalltalk76.

1979: ADA (From Pascal).

1980: C with classes (experimental version).

1983: C++ (by Bjarne Stroustrup).

1986: Objective-C (from C and Smalltalk).

1986: Eiffel (from Simula).

1991: Sather (From Eiffel).

1991: Java.

2000: C#.
Bjarne Stroustrup

at: AT&T Labs

3. C++ Programming Language:

For the last couple of decades, the C programming language has

been widely accepted for all applications, and is perhaps the most powerful

of structured programming languages. Now, C++ has the status of a

structured programming language with object oriented programming (OOP).

C++ has become quite popular due to the following reasons:

1. It supports all features of both structured programming and OOP.

2. C++ focuses on function and class templates for handling data

types.

4. C++ Program Development Process (PDP):

C++ programs typically go through six phases before they can be

executed. These phases are:

1. Edit: The programmer types a C++ source program, and makes

correction, if necessary. Then file is stored in disk with extension (.cpp).

2. Pre-Processor: Pre-processing is accomplished by the pre-proceccor

before compilation, which includes some substitution of files and other

directories to be include with the source file.

3. Compilation: Converting the source program into object-code.

4. Linking: A linker combines the original code with library functions to

produce an executable code.

5. Loading: The loader loads the program from the disk into memory.

6. CPU: Executes the program, residing in memory.

These steps are introduced in the figure below:

LECTURE 2

1. Algorithm:

As stated earlier an algorithm can be defined as a finite sequence of

effect statements to solve a problem. An effective statement is a clear,

unambiguous instruction that can be carried out .Thus an algorithm should

special the action to be executed and the order in which these actions are to

be executed.

Algorithm properties:

Finiteness: the algorithm must terminate a finite number of steps.

Non-ambiguity: each step must be precisely defined. At the

completion of each step, the nest step should be uniquely determined.

Effectiveness: the algorithm should solve the problem in a reasonable

amount of time.

Example 1: Develop an algorithm that inputs a series of number and output

their average .

A computer algorithm can only carry out simple instruction like:

"Read a number".

"Add a number to anther number".

"Output a number".

1. Carry out initialization required.

2. Read first number.

3. While the number of numbers is not complete do

4. begin

5. Add the number to the accumulated sum.

6. increment the count of numbers entered.

7. Read next number.

8. End

9. Evaluate the average.

Example 2: Devolve an algorithm that allows the user to enter the count of

numbers in a list followed by these numbers. The algorithm should find and

output the minimum and the maximum numbers in the list.

An algorithm for this might be:

Initialize.

Get count of numbers.

Enter numbers and find maximum and minimum .

Output result.

The user might enter zero for the count. To deal with this case the above

general case can be extended as follows to be an algorithm:

1. Initialize the require variables.

2. Get count of numbers.

3. If count is zero then exit.

4. Otherwise begin.

5. Enter numbers.

6. Find max and min.

7. Output result.

8. End.

2. Flowcharts

A flowchart is a graphical representation of an algorithm or of a portion

of an algorithm .Flowcharts are drawn using symbols. The main symbols used

to draw a flowchart are shown in following figure.

Start

Stop Start and Stop Symbols

Read Print
Input and Output Symbols

Mathematical and logical

 X=Y*Z

 processing symbol

Condition Decision making symbol

1A

2A Connector symbols

Example 1:
Draw a flowchart to read 3 numbers: x , y and z and print the

largest number of them.

Start

Read x

Max=x

Read y

Yes

No

y>max
?

Max=y

Read z

Yes

No

z>max

?

Maax=z

Print max

End

Example 2:

Draw the flowchart required to find the sum of negative

numbers among 50 numbers entered by the user.

Start

Counter=0
Sum=0

Read number

Counter=counter+1

Yes

NO Is
number<

0

Sum=sum + number

Is NO

counter

> 50

Yes

Print sum

End

WORK SHEET (1)

AN INTRODUCTION

Q1: What do you means by program?

Q2: Why C++ language becomes quite popular?

Q3: Talk briefly about C++ program development process ?

Q4: Write an algorithm and flowcharts for the following:

a. Sum the even numbers for n numbers.

b. Display numbersfrom 0 to 10.

c. The multiplication of 10 numbers.

Lecture 3

1 Character set:

C++ has the letters and digits, as show below:

Uppercase:

Lowercase:

Digits:

A,B,C,...,Z

a, b, c, . . ., z

0,1,2,...,9

Special Characters: All characters other than listed treated as

special characters for example:

+ - * / ^

([{ }]

) < = > , (Comma)

“ (Double Conations) . (Dot) : (Colon) ; (Semicolon) (Blank Space)

In C++ language, upper case and lower case letters are distinct and hence

there are 52 letters in all. For example bag is different from Bag which is

different from BAG.

2 Identifiers:

An identifier is a name given to some program entity, such as variable,

constant, array, function, structure, or class. An identifier is a sequence of

alphanumeric (alphabetic and numeric) characters, the first of which must be

a letter, and can’t contain spaces. The length of an identifier is machine

dependent. C++ allows identifiers of up to 127 characters.

A variable should not begin with a digit. C++ does not set a maximum

length for an identifier. Some examples of valid identifiers are as follows:

My_name

i

B

(7 char.)

(1 char.)

(1 char.)

Examples of invalid identifiers are:

3ab a()test ros sal

3 Keywords:

The keywords are also identifiers but cannot be user defined, since they

are reserved words. All the keywords should be in lower case letters. Reserved

words cannot be used as variable names or constant. The following words are

reserved for use as keywords:

Some of C++ Language Reserved Words:
break case char cin cout

delete double else enum false

float for goto if int

long main private public short

sizeof switch true union void

4 Constants:

There are three types of constants: string constants, numeric constants,

and character constants.

1. String Constants: A string constants are a sequence of alphanumeric

characters enclosed in double quotation marks whose maximum length is 255

characters. In the following are examples of valid string constants: (“The

result=”, “RS 2000.00”, “This is test program”). The invalid string constants are

like: (Race, “My name, ‘this’).

2. Numeric Constants: Numeric constants are positive or negative numbers.

There are four types of numeric constants: integer, floating point,

hexadecimal, and octal.

 Integer Integer

 Short integer (short)

 Long integer (long)

 Float Single precision (float)

 Double precision (double)

 Long double

 Hexa Short hexadecimal

 Long hexadecimal

 Unsigned char

Unsigned

Unsigned integer
 Unsigned short integer

 Unsigned long integer

 Octal Short octal

 Long octal

(a) Integer constants: Do not contain decimal points: int x,y; shortint x,y;

longint x,y;

 Integer data: size (16 or 32) fill in -215 to 215-1 for 16 bit and -231 to

231-1 for 32 bit.

 Short integer: fill in -215 to 215-1.

 Long integer: fill in -231 to 231-1.

 Unsigned: fill in (0 to 65635) for 16 bit and (0 to 4,294, 967, 295) for

32 bit.

(b) Floating point constants: Positive or negative numbers are represented

in exponential form. The floating point constant consists of an optionally

(signed) integer or fixed point number (the mantissa) followed by the

letter E and e and an optionally signed integer (the exponent). Ex.

(9010e10, 77.11E-11).

 Float 4 bytes.

 Double 8 bytes.

 Long double 12 or 16.

(c) Hexadecimal constants: Hexadecimal numbers are integer numbers of

base 16 and their digits are 0 to 9 and A to F.

(d) Octal constants: Octal numbers are numbers of base 8 and their digits

are 0 to 7.

3. Character Constants: A character represented within single quotes

denotes a character constant, for example ‘A’, ‘a’, ‘:’, ‘?’, etc…

Its maximum size is 8 bit long, signed, and unsigned char are three distinct

types.

Char x; char x,y,z;

The backslash (\) is used to denote non graphic characters and other

special characters for a specific operations such as:

Special Escape Code:

Escape Code Description

\n
New line. Position the screen cursor to the beginning of the next

line.

\t
Horizontal TAB (six spaces). Move the screen cursor to the next tab

stop.

\r
Carriage return. Position the cursor to the beginning of the current

line, do not advance to the next line.

\a Alert. Produces the sound of the system bell.

\b Back space

\\ Backslash. Prints a backslash character.

\f Form feed

\v Vertical tab

\” Double quote. Prints a (“) character.

\o Null character

\? question mark

\ooo Octal value

\xhhh Hexadecimal value

5. C++ operators:

C++

operators

Arithmetic operators

Assignment operators

Comparison and logical Relational,equality,logical

operators

Bit wise logical operators

Special operators Unary, ternary, comma

 Scope, new&delete, other

1. Arithmetic operators: These operators require two variables to be

evaluated:

+ addition - subtraction * multiplication

/ division % modula (remainder of an integer division)

The division result are:

Integer / integer = integer ► 39/7=5

Integer / float = float ► 39/7.0 =5.57

float / integer = float ► 39.0/7 =5.57

float / float = float ► 39.0/7.0=5.57

while 39%5=7, since 39=7*5+4

Arithmetic operators as per precedence:

() for grouping the variables.

- Unary for negative number.

* / multiplication & division. + -

addition and subtraction.

Example: X+y*X-Z, where X=5, Y=6, and Z=8.

5 + (6*5)-8 → (5+30)-8 → 35-8 → 27

2. Assignment Operators: The operatonal assignment operator has the

form:

Variable = variable operator expression;

Ex: x=x+5; y=y*10;

The operational assignment operator can be written in the following

form:

Variable operator = expression

Ex: x+=5; y*=10;

It is used to assign back to a variable, a modified value of the present

holding:

= Assign right hand side (RHS) value to the left hand side (LHS).

+= Value of LHS var. will be added to the value of RHS and assign it

 back to the var. in LHS.

-= Value of RHS var. will be subtracted to the value of LHS and

 assign it back to the var. in LHS.

*= Value of LHS var. will be multiplied to the value of RHS and

 assign it back to the var. in LHS.

/= Value of LHS var. will be divided to the value of RHS and assign

 it back to the var. in LHS.

%= The remainder will be stored back to the LHS after integer

 division is carried out between the LHS var. and the RHS var.

>>= Right shift and assign to the LHS.

<<= Left shift and assign to the LHS.

&= Bitwise AND operation and assign to LHS

|= Bitwise OR operation and assign to LHS

~= Bitwise complement operation and assign to LHS

This is a valid statements:

A=b=c+4;

C=3*(d=12.0/x);

Exercise:

Rewrite the equivalent statements for the following examples, and find it

results. Assume: X=2 , Y=3 , Z=4 , V=12 , C=8.

Example Equivalent Statement Result

X+= 5 X=X+5 X 7

Y-= 8 Y=Y-8 Y-5

Z*= 5 Z=Z*5 Z

V/= 4 V

C%= 3 C

3. Comparision and logical operators: It has three types relational

operators, equality operators, and logical operators.

(a) Relational operators: < less than, > greater than, <= less than or equal,

>= greater than or equal, an expression that use relational operators

return the value of one if the relational is TRUE ZERO otherwise.

Ex: 3 > 4 → false, 6 <=2 →false, 10>-32 → true, (23*7)>=(-67+89) → true

(b) Equality operators: == equal to , != not equal to

Ex: a=4, b=6, c=8. A==b→false, (a*b)!=c→true,‘s’==’y’ →false.

(c) Logical operators: The logical expression is constructed from relational

expressions by the use of the logical operators not(!), and(&&), or(||).

AND (&&) Table:

A B A&&B

T T T

T F F

F T F

F F F

AND (&&) Table:

A B A&&B

1 1 1

1 0 0

0 1 0

0 0 0

OR (||) Table:

A B A||B

T T T

T F T

F T T

F F F

NOT (!) Table:

A !A

T F

F T

OR (||) Table:

A B A||B

1 1 1

1 0 1

0 1 1

0 0 0

NOT (!) Table:

A !A

1 0

0 1

Examples:

Example 1:

a=4, b=5, c=6

(a<b)&&(b<c) (a<b)||(b>c) !(a<b)||(c>b) (a<b)||(b>c)&&(a>b)||(a>c)

T &&T T || T !(T) || T T || F && F||F

T T F || T T || F || F

 T T || F

 T

Example 2:

Assume: X=0, Y=1, Z=1. Find the following expression:

M = ++X || ++Y && ++Z

M = ++X || ++Y && ++Z
=1||(2&&2)

= T||(T&&T)
= T||T
= T
= 1

(d) Bitwise logical operator:

& bitwise AND, ^ bitwise exclusive OR(XOR), | bitwise inclusive OR,

>> bitwise left shift, << bitwise right shift, ~ bitwise complement.

Ex: x=23 (0001 0111) ~x=132 (1110 1000)

X=33 (0010 0001)

X<<3

0 01000010

0 10000100

1 00001000 the resultant bit pattern will be (0000 1000)

X=5, y=2 → x&y (0000) , x|y (0111) , x^y (0111)

(e) special operators:

1. Unary operator:

* Contents of the storage field to which a pointer is pointing.

& Address of a variable.

- Negative value (minus sign).

! Negative (0, if value ≠ 0, 1 if value =0).

~ Bitwise complement.

++ Increment.

-- Decrement.

Type Forced type of conversion

Size of Size of the subsequent data type or type in byte.

2. Ternary operator: It is called conditional operator, it is like if else

construction:

Expression 1 ? expression 2 : expression 3 If

(v%2 == 0)

e = true
E=(v%2 ==0)? True : false

Else

e=false

3. Comma operator: (,)

Int a,b,c; or it is used in control statements

4. Scope operator: (::) It is used in a class member function definition.

5. New and delete operators: it is a method for carrying out memory

allocations and deallocations.

6. Other operators: parentheses for grouping expressions, membership

operators.

6. Type Conversion:

Some variables are declared as integers but sometimes it may be

required to bet the result as floating point numbers. It is carried out in two

ways:

(A) Converting by assignment: (B) Cast operator:

int x; float y; x=y; Result =(int) (19.2/4); or

 Result = int (19.2/4);

Lecture 4

1 Statements:

A statement in a computer carries out some action. There are three

types of statements used in C++; they are expression statement, compound

statement and control statement.

Expression statement Compound statement Control statement
x=y; { If (a>b) {

sum=x+y; a=b+c; a=I;
 x=x*x; k=a+1;

 y=a+x; }

 }

2 Getting Started with C++:

The skeleton of a typical C++ program structure is given below:

Program heading

Begin

Type or variable declaration

Statements of operation

Results

end

The keyboard and screen I/O instructions in C++ are:

(a): COUT/ display an object onto the video screen:

Cout<<var.1<<var2<<…<<var.n;

(b): Cin/ It is used to read an object from a standard input device (keyboard):

Cin>>var.1>>var.2>>…>>var.n;

To begin learning C++ lets examine our first C++ Program:

Example 1

#include<iostream.h>

void main()
{

// A program to print

welcome cout << “Welcome”;

}

#include<iostream.h> this line is for pre-processor directive. Any begins with # is

processed before the program is compiled. C++ programs must be start with #include.

Every group of related functions is stored in a separate library called (header file).To use

the cin and cout, must include the header file iostream.

main(), is the name of C++ function. Every C++ program must have a function called

main.

void, is the return type of the main function. When the return type of a function is void,

this function will not passes back any value to the calling function.

Some programmers use int as a return type for the main function, in this case a

return(0) statement must be written as a last statement of the main function-body.

{, introducing the statements that define the function.

}, indicates the end of the statements in the function.

//, text after these symbols is a comment. It does not affect the program code, and

compilers normally ignore it.

cout, the input stream object. It passes the characters quotes (“) to the terminal screen.

cin, the input stream object. It reads the input values from the keyboard.

<<, the stream insertion operator (or send operator).

>>, the stream extraction operator (or get from operator).

; , semicolon, the terminator of every C++ statement.

The endl is used in c++ to represent a new line, as shown in the following

example:

Example 2

#include<iostream.h>
void main()
{

cout << “hallow” << endl;

cout << “students”;

}

The \n is a special escape code, also used in C++ to represent a new line, as

shown in the following example:

Example 3

#include<iostream.h>

void main()

{

cout << “hallow \n”;

cout << “students”;
}

3 Variables Declaration:

A declaration is a process of naming the variables and their statements

datatypes in C++. C++ allows declaration of the variables before and after

executable statements. A variable ia an object that may be take on values of

the specified type.

Also ,a variable is a location in the computer’s memory where a value

can be stored for later use by the program. Variables are like buckets that

hold data. These data buckets are really locations in the computer’s memory.

The variable must be declared by specifying the datatype and the

identifier. datatype id.1, id2, …,idn;

A variable defined by stating its type, followed by one or more spaces,

followed by the one or more variable names separated by commas, then

followed by semicolon. For example:

unsigned short Int X;

float Y;

char A, a, c;

Note: C++ does distinguish between above A and a variables

(C++ is case-sensitive).

Example 4

 The following program reads three different inputs and outputs it.

#include<iostream.h>

void main()

{ Output:

int num=3;
Number=3

cout << “number=”<<num<<”\n”;

Character=a char ch=’a’;

cout << “character=”<<ch<<”\n”; Real number=34.45

float fa=-34.45;

cout<<”real number=”<<fa<<”\n”;

}

Example 5

 The following program reads three different inputs and outputs it.

#include<iostream.h>

void main()

{

int n; float f; char c;

cout << “input integer number:”;

cin>>n;

cout<<endl;

cout << “input decimal number:”;

cin>>f;
cout<<endl;

cout << “input character:”;

cin>>c;

}

4 Constants:

Like variables, constants are data storage locations. Unlike variables, and as

the name implies, constants don’t change.

const int myage=23;

const double pi=3.14;

const float salary=20.5;

Example 6

 Write a program that reads the radius of a circle, then computes and
outputs its area.

#include<iostream.h>

void main()

{

const float pi = 3.14;

int r; float c;

cout << “enter the radius of circle:”;
cin>>r;

cout<<endl;

c = r * r * pi;

cout << “the area of circle:” << c;

}

Example 7

 The following program computes the arethmatic operators.

#include<iostream.h>

void main()

{ Output:

int a,b,sum,sub,mul,div; Enter any two numbers

cout << “enter any two numbers<<endl; 10 20

cin>> a>>b; A=10 b=20 sum=30

sum=a+b;
 Sub=-10
 Mul=200

sub=a-b;

 Div=0
mul=a*b;

div=a/b;

cout<<”a=”<<a<<”b=”<<b<<”sum=”<<sum<<endl;

cout<<”sub=”<<sub<<endl;

cout<<”mul=”<<mul<<endl;

cout<<”div=”<<div<<endl;

}

Example 8

 The following program computes different division operators.
#include<iostream.h>
void main()

{

int x, y, z, r ;

x= 7 / 2;
cout << "x=" << x <<endl;

y=17/(-3);

cout << "y="<< y <<endl;

z=-17/3;

cout << "z="<< z <<endl;
r=-17/(-3);

cout << "r="<< r <<endl;

}

The modulus operator “%” is used with integer operands (int, short, long,

unsigned). It can’t be used with float or double operands.

Example 9

#include<iostream.h>

void main()

{

int y1, y2;

y1 = 8 % 3;

y2 = -17 % 3;

cout << "y1="<< y1 <<endl;

cout << "y2="<< y2 <<endl;
}

Lecture 5

1 Examples of order evaluation:

Example 1:

Write the following equation as a C++ expression:

Solution:

f = (a + b + c + d + e) / 10;

Note: the parentheses here are required because division has

higher precedence than addition.

Example 2:

State the order of evaluation for the following expression:
Z=P*R%Q+W/X–Y;

Solution:

1. *
2. %
3. /
4. +
5. -

Example 1

 Write C++ program to perform the above equation:

#include<iostream.h>

void main()

{

int Z, P, R, Q, W, X, Y;

cout << "enter P:"; cin >> P;

cout << "enter R:"; cin >> R;

cout << "enter Q:"; cin >> Q;
cout << "enter W:"; cin >> W;

cout << "enter X:"; cin >> X;

cout << "enter Y:"; cin >> Y;

Z=P*R%Q+W/X-Y;

cout << "the result="<< Z;

2 The “math.h” Library:

The “math.h” library contains the common mathematical function used in the

scientific equations.

Common function from math.h library:

Mathematical Expression C++ Expression

eⁿ Exp(x)

Log(x) Log10(x)

Ln(x) Log(x)

Sin(x) Sin(x)

xⁿ Pow(x,n)

√x Sqrt(x)

Example:

Write the following equation as a C++ expression and state the order of

evaluation of the binary operators:

Solution:

f = sqrt ((sin(x) – pow(x,5)) / (log(x) + x/4))

Order of evaluation:

Exercise:

Write the following equation as a C++ expression and state the order of

evaluation of the binary operators:

Solution: ?

The ++ and - - operators can be written either before the variable (prefix

notation) or after the variable (postfix notation) as in the following:

Prefix notation: ++ X X is incremented before its value is

taken or returned to current statement.

Postfix notation: X ++ X is incremented after its value is taken

or returned to current statement.

The difference between the Prefix and Postfix notations:

Prefix notation Postfix notation

 int y; int y;
 int x = 7; int x = 7;

 cout<< ++x <<endl; cout<< x++ <<endl;
 y=x; y=x;

 cout<<y; cout<<y;

 Output: Output:

 8 7

8 8

3 Manipulator Functions:

They are special stream functions that change certain characteristics of the

input and output.

(a) Endl: Generate a carriage return or line feed character.
Cout << “a” << endl;

(b) Setbase: It is used to convert the base of one numeric value into a

nother base
Dec(base 10), hex(base 16), oct(base 8)

Example 2

Write C++ program to convert a base of a number:

#include<iostream.h> Enter number

void main() 10

{ Decimal base=10

int value; Hexadecimal base=a

cout << "enter number:"; cin >> value; Octal base=12

cout << "Decimal base=”<<dec<<value<<endl;

cout << "Hexadecimal base=”<<hex<<value<<endl;

cout << "Octa base=”<<oct<<value<<endl;

}

When using setbase the statement will be:

Cout<<”Decimal base=”<<setbase(10);

Cout<<value<<endl;

(c) Setw: It is used to specify the minimum number of character positions on

the O/P field a variable will consume: setw(int w)

Example 3

 Write C++ program to use tab:

#include<iostream.h>
#include<iomanip.h>

200 300

void main(void)
{

int a,b;

a=200;

b=300;

cout<<a<<’\t’<<b<<endl;

}

Example 4

 Write C++ program to use setw:

#include<iostream.h>
#include<iomanip.h>

200 300

void main(void) 200 300
{

int a,b;

a=200;

b=300;
cout<<setw(5)<<a<<setw(5)<<b<<endl;

cout<<setw(6)<<a<<setw(6)<<b<<endl;

}

(d) Setfill: It is used to specify a different character to fill the unused field

width of the value. Setfill(char f)

Example 5

Write C++ program to use setfill:

#include<iostream.h>

#include<iomanip.h> **200**300

void main(void) ***200***300

{

int a,b;
a=200;

b=300;

setfill(‘*’);
cout<<setw(5)<<a<<setw(5)<<b<<endl;

cout<<setw(6)<<a<<setw(6)<<b<<endl;

}

(e) Setfill: It is used to control the number of digits of an output stream

display of a floating point value. Setprecision (int p)

Example 6

 Write C++ program to use setprecision:

#include<iostream.h>

#include<iomanip.h> 1.7

void main(void) 1.66667
{

float a,b,c;

a=5; b=3; c=a/b;

setfill(‘*’);

cout<<setprecision(1)<<c<< endl;
cout<<setprecision(5)<<c<< endl;

}

WORK SHEET (2)

First Elements of C++

Q1: What do you means by C++ character set?

Q2: What do you means by identifiers? What is the maximum length of

identifiers?

Q3: What do you means by case-sensitive?

Q4: What do you means by reserved word?

Q5: Write a general layout of C++ program. Comment on each part of

it.

Q6: What is the main purpose of endl and \n ?

Q7: List and comments on the special escape codes.

Q8: What are the main types of variables, its sizes, and its range of

values?

Q9: What do you means by constants?

Q10: List the priorities of the arithmetic operations.

Q11: Find the value of A for the following:

A=(5+2*3+((3–2)*7)+ -9)/2.

Q12: What are the main keywords are includes in iostream.h and

math.h?

Q13: What are the main difference between prefix and postfix notation?

Q14: Find the value of B (true or false) for the following:

i= 5;

j = 9;

B= ! ((i > 0) && (i >= j));

Q15: Write C++ program to read x and compute sin, cos, and tan of x.

Q16: Rewrite the equivalent statements for the following examples,

and find it results. Assume: X=2 , Y=3 , Z=4 , V=12 , C=8.

(X+=5 , Y-=8, Z*=5 , V/=4 , C %=3)

Q17: Given that A and B are real variables with values 1.5, and 2.5

respectively, and C is integer variable with value 3, evaluate the

following: NOT (A < 0) AND (B/C <= 0).

Q18: Write a program in C++ to find the area of a circle.

Q19: Write a program to read a set of (5) real no.s and find out the

sum and average of them.

LECTURE 6

1. Selection Statements:

Conditional expressions are mainly used for decision making. C++ provides

multiple selection structures: if, if/else, else if, nested if and switch.

2. The Single If Statement Structure:

The IF statement is used to express conditional expression. If the given

condition is true then it will execute the statements; otherwise it will execute

the optional statements.

General Form of single-selection If statement:

if (expression or condition) statement1 ;

condition
 statement1

Example 1: if (avrg >= 3.5)

 cout << “good”;

Example 2: if (x > 0.0)

 sum += x;

Example 3: cin >> num;

 if (num == 0)

 zcount = zcount + 1;

Example 1

 Write a C++ program to read any two numbers and
print the largest value of it:

#include<iostream.h>

void main()

{

Float x,y;

Cout<<”Enter any two numbers\n”;

Cin>>x>>y;
If (x>y)

Cout << “largest value is”<<x<<endl;

}

3. The Single Block If Statement Structure :

The block IF statement are enclosed in ({) and (}) to group declaration and

statements into a compound statement or a block. These blocks are always

considered as a single statement. The structure is:

General Form of single block selection If statement:

if (expression or condition)

{
statement1 ;

statement2 ;

statement3 ;

}

Example 2

 Write a C++ program to read a number and check if it’s positive,
if it’s so print it, add it to a total, and decrement it by 2:

#include<iostream.h>

void main()

{
int num, total=0;

cin >> num;

if (num >= 0)

{cout << num <<” is a positive”;

total += num; num = num – 2;
} }

General Form of If/else statement:

 if (expression) if (expression)

 statement1 ; {statements }

 else statement2 ; else {statements}

4. The If/else Statement Structure:

The IF structure is

true
condition

false

Statement1 Statement2

In this case, either of the two statements are executed depending upon the

value of the expression. Note that there is a semicolon after each of the

statement but not after the IF expression. Note that the else statement without

braces leads to confusion so:

 If (i>j) { If (a>b)
 temp=a;

 }
 Else

 temp=b;

Example 1: cin >> value;

 if (value >= 0)
 cout << “positive”;

 else

 cout << “negative”;

Example 2: cin >> num1 >> num2;

if (num1 > num2)

cout << num1;

else

cout << num2;

Example 3

 Write a C++ program to read a student degree, and check if it’s
degree greater than or equal to 50, then print pass, otherwise print fail:

#include<iostream.h>

void main()

{
int degree;

cin >> degree;

if (degree >= 50)

cout << ”pass”;

else
cout << “fail”;

}

Example 4

 Write a C++ program to read a number, and check if it’s even or
odd:

#include<iostream.h>

void main()

{

int num;
cin >> num;

if (num % 2 == 0)

cout << ”even”;

else

cout << “odd”;
}

5. Else if Statements:

General Form of else if statement:

if (expression or condition 1)

expression or condition 2) statement2 ;

expression or condition 3) statement3 ;

:

else if (expression or condition n) statement-n ;
else statement-e ;

Example 1:

if (value == 0) cout << “grade is A”; else if

(value == 1) cout << “grade is B”; else if (

value == 2) cout << “grade is C”; else

cout << “grade is X”;

Example 5

 Write a C++ program to read a number, and print the day of the
week:
#include<iostream.h>
void main()

{

int day;

cin >> day;

if (day == 1) cout << “Sunday”;
else if (day == 2) cout << “Monday”;

else if (day == 3) cout << “Tuesday”;

else if (day == 4) cout << “Wednesday”;

else if (day == 5) cout << “Thursday”;

else if (day == 6) cout << “Friday”;

else if (day == 7) cout << “Saturday”;
else cout << “Invalid day number”;

}

else if (
else if (

statement1 ;

Example 6

 Write C++ program to compute the value of Z according to the
following equations:

Z ={

x + 5

cos(x) + 4

√ x

: x < 0

: x = 0
: x > 0

#include<iostream.h>

void main()

{

int Z, x;

cout << "Enter X value \n";
cin >> x;

if (x < 0) Z= x + 5;

else if (x == 0) Z= cos(x) + 4;

else Z= sqrt(x);

cout << "Z is " << Z;
}

6. Nested If Statements:

Some of the samples of NESTED if-else constructions are shown below:

If (exp.) { Statements } If (exp.) { If (exp.) {

Else { Statements} If (exp.) {Statements} If (exp.) {Statements}

 Else { Statements} } Else { Statements} }
 Else {Statements} Else {If (exp)
 {Statements}

 Else {Statement}

 }

Example 7

 Write C++ program to find a largest value among three numbers:

#include<iostream.h>

void main()

{

#include<iostream.h>

void main()

{
Float x,y,z;

Cout<<”Enter any two numbers\n”;

Cin>>x>>y,z;

If (x>y) {

If (x>z)

Cout << “largest value is”<<x<<endl;
Else

Cout << “largest value is”<<z<<endl;

}

Else If (y>z)

Cout << “largest value is”<<y<<endl;
Else

Cout << “largest value is”<<z<<endl;

}

LECTURE 7

1. The Switch Selection Statement (Selector):

The switch statement is a special multi way decision maker that tests

whether an expression matches one of the number of constant values,

and braces accordingly.

General Form of Switch Selection statement:

switch (selector)

{

case label1 : statement1 ; break;

case label2 : statement2 ; break;

case label3 : statement3 ; break;

:
case label-n : statement-n ; break;

default : statement-e ; break;

}

Example 1: switch (value)

 {

 case 0: cout << “grade is A”;

 break;
 case 1: coucout << “grade is B”;

 break;

 case 2: coucout << “grade is C”;

 break;
 default: cout << “grade is X”;

}

break;

Example 1

 Write C++ program to read integer number, and print the name of
the day in a week:

#include<iostream.h>

void main()

{

int day;

cout << “Enter the number of the day \n”;

cin >> day;
switch (day)

{
case 1: cout << “Sunday”; break;

case 2: cout << “Monday”; break;

case 3: cout << “Tuesday”; break;

case 4: cout << “Wednesday”; break;

case 5: cout << “Thursday”; break;

case 6: cout << “Friday”; break;

case 7: cout << “Saturday”; break;

default: cout << “Invalid day number”; break;

}
}

Example 2

 Write C++ program to read two integer numbers, and read the
operation to perform on these numbers:

#include<iostream.h>

void main()

{

int a, b;

char x;

cout << “Enter two numbers \n”;

cin >> a >> b;

cout << “+ for addition \n”;

cout << “- for subtraction \n”;

cout << “* for multiplication \n”;

cout << “/ for division \n”;

cout << “enter your choice \n”;
cin >> x;

switch (x)

{

case ‘+’: cout << a + b;

break;

case ‘-’: cout << a - b;

break;

case ‘*’: cout << a * b;

break;
case ‘/’: cout << a / b;

break;

default: break;

}

}

2. Nested Switch Selection Statement:

General Form of Nested Switch Selection statement:

switch (selector1)

{

case label1 : statement1 ; break;

case label2 : statement2 ; break;

case label3 : switch (selector2)

{
case label1 : statement1 ; break;

case label2 : statement2 ; break;

:
}

case label-n : statement-n ; break;

default : statement-e ; break;

}

Example 3

 Write C++ program to read integer number, and print the name of
the computerized department:

#include<iostream.h>

void main()

{

int i,j;
cout << “Enter the number for the department name \n”;

cin >> i>>j;

switch (i)

{

case 1: cout << “Software Engineering Department”; break;

case 2: cout << “Control and computers Department”; break;

case 3: cout << “Computer Sciences Department”;
 cout<<”Enter the no. of branch”;

{
switch(j)

case 1: cout << “Software”; break;

case 2: cout << “Information system”; break;

case 3: cout << “Security”;

case 4: cout << “AI”;

}

default: cout << “Invalid day number”; break;

}

}

3. Conditional Statement:

General Form of Conditional statement:

(condition ? True : False)

Example 1: cin >> value;

 cout << (value >= 0 ? “positive” : “negative”);

Example 2: cin >> x >> y;

 cout << (x < y ? -1 : (x == y ? 0 : 1));

Example 4

 Write C++ program to read integer number, and print if its even or
odd:

#include<iostream.h>

void main()

{

int value;
cout << “Enter the number \n”;

cin >> value;

cout<<(value%2==0?”even”:”odd”);

}

WORK SHEET (3)

Selection Statements

Q1: Write C++ program to read two integer numbers then print “multiple”

or “not” if one number is a multiple to another number.

Q2: Write C++ program to read integer number and print the equivalent

string.
e.g:

0 Zero

1 One

2 Two
:

Q3: Write C++ program to read a score of student and print the estimation

to refer it.
e.g:

100 - 90 Exultant
89 - 80 Very good

79 - 70 Good

69 - 60 Middle

59 - 50 Accept

49 - 0 Fail

Q4: Write C++ program to represent a simple nested case (selector).

Q5: Write C++ program to compute the area of circle if the radius r=2.5.
Note: area of circle is r * r * pi ,

pi is 3.14

Q6: Write C++ program to read an integer number and check if it is positive or

negative, even or odd, and write a suitable messages in each case.

Q7: Write a program to read 3 numbers, and write the largest and smallest

numbers.

Q8: Write C++ program to read an integer from 1 to 12, and print out the

value of the corresponding month of the year.

Q9: Write C++ program to reads a character and print if it is digit (0..9),

capital letter (A,B, … ,Z), small letter (a, b, … ,z), special character (+, !,

@,#, ,{,>,…).

Q10: Write C++ program to read x and compute the following:

Q11: Write C++ program to read 5 numbers and determine if the numbers

sorted ascending or not.

Q12: Write C++ program to read two integer numbers, and read the

operation to perform on these numbers.

Q13: Write a program to read X and print Sin X if X>0, square root X f X<0 and

absolute X if X/2 is integer.

LECTURE 8

1. Loop Statements:

The loop statements are essential to construct systematic block styled

programming. C++ provides three iteration structures: while, do/while, and for.

2. While Repetition Structure:

General Form of While statement:

while (condition)

statement1 ;

while (condition)

{
statement1 ;

statement2 ;

:

statement-n ;

}

condition

T
Statement s

F

The condition represents the value of a variable, unary or binary expression,

and a value returned by a function.

Example i = 0;

1: while (i < 10)
{

cout << i;
i ++;

}

Output:

0123456789

i=10

Example i = 0;

2: while (i < 10)

{
cout << i;
i += 2;

}

Example i = 1;

3: while (i < 10)
{

cout << i;
i += 2;

}

Example 1

Output: even numbers only

02468

i=10

Output: odd numbers only

13579

i=11

 Write C++ program to find the summation of the following series:

sum = 1 + 3 + 5 + 7 + … + 99
Iin other words: find the summation of the odd numbers, between 0 and 100)

#include<iostream.h>

void main()

{
int count = 1;

int sum = 0;

while (count <= 99)

{

sum = sum + count;
count = count + 2;

}

cout << “sum is: “ << sum << endl;

}

Example 2

 Write C++ program to find the cub of a number, while it is positive:

#include<iostream.h>

void main()
{

int num, cubenum;

cout << “Enter positive number \n”;

cin >> num;

while (num > 0)
{

cubenum = num * num * num;

cout << “cube number is :” << cubenum << endl;

cin >> num;

}

Example 3

 Write C++ program to find the summation of the following series:

#include<iostream.h>

void main()

{

int i = 1, n ,sum = 0;
cout << “enter positive number”;

cin >> n;

while (i <= n)

{

sum += i * i ;
i++;

}

cout << “sum is: “ << sum << endl;

}

Example 4

 Write C++ program to find the summation of student’s marks, and
it’s average, assume the student have 8 marks:

#include<iostream.h>

void main()

{
int mark, i, sum = 0;

float av = 0;

i = 1;

while (i <= 8)

{
cout << “enter mark: “;

cin >> mark;

sum = sum + mark;

i++;

}
cout << “sum is: “ << sum << endl;

av = sum / 8;

cout << “average is: “ << av;

}

Example 5

 Write C++ program that display the following board pattern:
* *******

* *******
* *******

* *******
* *******

* *******

* *******
* *******

#include<iostream.h>

void main()

{

int row = 8, column;

while (row-- > 0)
{

column = 8;

if (row % 2 == 0)

cout << “ “;

while (column-- > 0)

cout << “*”;

cout << ‘\n’;

}

}

Example 6

 Write C++ program to check for a line feed and tab of a given
character:

#include<iostream.h>

void main()

{

Char ch;

Cout<<”enter a line \n”;
Ch=cin.get();

While (ch!=’\n’ && ch!=’\t’)

{ cout.put(ch);

Ch=cin.get(); }

}

3. Do / While Statement:

General Form of Do / While statement:

do

statement1 ;

while (condition);

do

{

statement1 ;

statement2 ;

:

statement-n ;

}

while (condition);

Statement s

condition
T

F

Example 1: i = 0;

 do

{

cout << i;

i ++;

}

while (i < 10)

Output:

0123456789

i=10

Example 2: i = 0;

 do

{

cout << i;

i += 2;

}

while (i < 10)

Output: even numbers only

02468

i=10

Example 7

Write C++ program to valid input checking, that accept the

numbers between 50 ... 70 only:

#include<iostream.h>

void main()

{

int accept = 1;
int x, low = 50, high = 70;

do

{

cout << “enter number: “;

cin >> x;

if (x >= low && x <= high)
accept =1;

else

accept = 0;

}

while (! accept);
}

while (accept == 1) or
while (accept != 0)

Example 8

 Write C++ program to find the summation of student’s marks, and
it’s average, assume the student have 8 marks:

#include<iostream.h>

void main()

{

int mark, i, sum = 0;

float av = 0;

i = 1;
do

{

cout << “enter mark: “;

cin >> mark;

sum = sum + mark;
i++;

}

while (i <= 8)

cout << “sum is: “ << sum << endl;

av = sum / 8;
cout << “average is: “ << av;

}

Example 9

 Write C++ program to find the factorial of n:

n! = n * n-1 * n-2 * n-3 * … * 2 * 1

#include<iostream.h>

void main()

{

int n, f = 1;
cout << “enter positive number: “;

cin >> n;

do

{

f = f * n;

n --;
}

while (n > 1);

cout << “factorial is: “ << f;

}

Example 10

 Write C++ program to find the summation of even numbers
#include<iostream.h>

void main()

{

int max,sum,digit;
digit=2;

cout << “enter a number: “;

cin >> max;

sum=0;

do
{

Sum=sum+digit;

Digit+=2;

}

while (digit<=max);
cout << “2+4+…=”<<max<<”sum=”<<sum<<endl; }

LECTURE 9

1. For Statement:

General Form of For statement:

for (initialization ; continuation condition ; update)

statement1 ;

for (initialization ; continuation condition ; update)

{
statement1 ;

statement2 ;

:

}

Example 1: for (i = 0; i < 10; i ++)

cout << i;

Example 2: for (i = 0; i < 10; i += 2)

cout << i;

Example 3: for (i = 1; i < 10; i += 2)

cout << i;

Example 1

Output:

0123456789

Output: even numbers only

02468

Output: odd numbers only

13579

 Write C++ program to add the numbers between 1 and 100:

#include<iostream.h>

void main()
{

int sum = 0;

for (int i = 1; i <= 100; i ++)

sum = sum + i;

cout << “sum is: “ << sum;
}

Example 2

 Write C++ program to find the factorial of n (using for

statement): n! = n * n-1 * n-2 * n-3 * … * 2 * 1

#include<iostream.h>

void main()

{

int n, f = 1;

cout << “enter positive number: “;
cin >> n;

for (int i = 2; i <= n; i ++) for (int i = n; i > 2; i --)

f = f * i;

cout << “factorial is: “ << f;

}

Example 3

 Write C++ program to the result of the following:

#include<iostream.h>

void main()

{

int sum = 0;
for (int i = 1; i <= 20; i ++)

sum = sum + (i * i);

cout << “The sum is: “ << sum;

}

Example 4

 Write C++ program to read 10 integer numbers, and find the sum
of positive number only:

#include<iostream.h>

void main()
{

int num, sum = 0;

for (int i = 1; i <= 10; i ++)

{

cout << “enter your number: “;
cin >> num;

if (num > 0) sum = sum + num;

}

cout << “The sum is: “ << sum;

}

Example 5

 Write C++ program to print the following series: 1, 2, 4, 8, 16, 32, 64

#include<iostream.h>

void main()

{

int x;

for (x = 1; x < 65; x *= 2)
cout << x <<” “;

}

Example 6

Write C++ program to print the following:

#include<iostream.h> 1 10

2 9 void main()

{ 3 8

int x; 4 7

for (x = 1; x < 7; ++ x) 5 6

cout << x <<”\t“ << 11 – x << endl; 6 5

}

Example 7

 Write C++ program to read a line using for loop

#include<iostream.h>

void main()

{

Char ch;
cout << “Enter a line\n“;

for (;(ch=cin.get())!=’\n’;) {

cout<<”Your character is:”<<endl;

cout.put(ch);

}
}

2. More about For Statement:

 We can use more than one control with for statement, as follow:

for (int m = 1, int n = 8 ; m < n ; m ++ , n --)

 We can create infinite loop, as follow:

for (; ;)

3. Nested Loops:

We can put loops one inside another to solve a certain programming

problems. Loops may be nested as follows:

Example 8

 Write C++ program to evaluate the following series:

#include<iostream.h>

void main()
{

int i, j, sum = 0;

for (i = 1; i <= 5; i ++)

for (j = 1; j <= 10; j ++)

sum = sum + (i + 2 * j);
cout << “sum is:“ << sum;

}

Example 9

 Write C++ program to print the following figure:
+
+ +

+ + +

++++

+++++

++++++

+++++++

++++++++

+++++++++

++++++++++

#include<iostream.h>

void main()

{

int i, j;
for (i = 1; i <= 10; i ++)

{

for (j = 1; j <= i; j ++)

cout << “ + “;

cout << “\n“;
}

}

Example 10

 Write C++ program to read a line using for loop

#include<iostream.h>

void main()

{

cout << “Explaining the nested for loop\n“;
for (int i=0;i<=2;i++) {

cout<<i;

for (int k=0;k<=2;k++) {

cout<<”computer sciences department \n”;

} } }

Exercise:

What is the output of the following C++ program?

#include<iostream.h>

void main()

{

int i, j, k;
for (i = 1; i <= 2; i ++)

{

for (j = 1; j <= 3; j ++)

{

for (k = 1; k <= 4; k ++)
cout << “ + “;

cout << “\n“;

}

cout << “\n“;

}
}

LECTURE 10

1. Breaking Control Statements:

For effective handling of the loop statements, C== allows the use of

the following types of control break statements:

(a) Break Control Statement:

The break statement is used to terminate the control from the loop

statements of the case-switch structure. The break statement is normally used

in the switch-case loop and in each case condition; the break statement

must be used. If not, the control will be transferred to the subsequent case

condition also. The general format of the break statement is : (Break;)

Example 1:

Example 2:

for (i = 1; i < 100; i ++)

{

cout << i;

if (i == 10) break;

}

for (i = 1; i < 10; ++ i)

for (j = 1; j < 20; ++ j)

{

cout << i * j << endl;

if (j == 10) break;

}

Output:

12345678910

Example 3:

Switch(day) {

Case ‘1’:cout<<”Monday\n”;

Break;

Case ‘2’: …..

}

Example 1

 Write C++ program to check if zero or negative value found:

#include<iostream.h>

void main()

{

int value,i;

i=0;

while (i<=10) {
cout<<”enter a number \n”;

cin>>value;

if (value<=0) {

cout<<”Zero or negative value found \n”;

brek;
}

i++

}

}

(b) Continue Control Statements:

The continue is used to repeat the same operations once again even it

it checks the error. Its general syntax is: (continue;)

It is used for the inverse operation of the break statement. The following

program segment will process only the positive integers. Whenever a zero or

negative value is encountered, the computer will display the message “zero

or negative value found” as an error and it continues the same loop as long

as the given condition is satisfied.

Cin>>value;

While (value <=100) {
If (value <=0)

Cout<<“zero or negative value found\n”;

Continue;

} }

 Example 1: Example 2:

 do

 { n = 1;

 cin >> x; for (i = 1; i < 5; ++i)
 cin >> n; {

 if (n < 1) continue; cin >> x;

 cout << x; n = 5 * x++ * (-1) / n;

-- n; if (n < 1) continue;

} cout << n;

while (n < 1); }

(c) Goto Statement:

The goto statement is used to alter the program execution sequence

by transferring the control to some other part of the program. Its general

syntax is: (goto label;)

There are two ways of using this statement:

1. Unconditional Goto: Itis used just to transfer the control from one part

of the programto the other part without checking any condition. It is

difficult in use.

Example 2

 Write C++ program to check if zero or negative value found:

#include<iostream.h>

void main()

{

Start: cout<<”***\n”;
Goto start;

}

2. Conditional Goto: Itis used to transfer the control of the execution from

one part of the program to the other in certian conditional cases.

Example 2

 Write C++ program to check if zero or negative value found:

#include<iostream.h>

void main()

{

Int value,i=0;

While i<=10) {

Cout<<”enter a number \n”;
Cin>>value;

Cout<<”zero or negative value found \n”;

Goto error;

}

Error:

Cout<<”input data error \n”;

}

Using For Statement Using While Statement Using Do/While Statement

Q1: Find the summation of the numbers between 1 and 100.

for(i=1 ; i<=100 ; i++)

i = 1;

i = 1;

s = s + i; while (i <= 100) do
 { {
 s = s + i; s = s + i;

 i++; i++;
 } }

 while (i <= 100);

--
Q2: Find the factorial of n.

cin >> n; cin >> n; cin >> n;
for(i=2 ; i<=n ; i++) i = 2; i = 2;

f = f * i; while (i <= n) do

 { {
 f = f * i; f = f * i;
 i++; i++;

 } }
 while (i <= n);

--

Q3: To find the result of the following: .

for(i=1 ; i<=20 ; i++)

i = 1;

i = 1;

s = s + (i *i); while (i <= 20) do

 { {
 s = s + (i *i); s = s + (i *i);
 i++; i++;

 } }
 while (i <= 20);

--
Q4: Read 10 numbers, and find the sum of the positive numbers only.

for(i=1 ; i<=10 ; i++) i = 1; i = 1;
{ while (i <= 10) do

cin >> x; { {

if (x>0) s = s + x; cin >> x; cin >> x;
} if (x>0) s = s + x; if (x>0) s = s + x;
 i++; i++;

 } }
 while (i <= 10);

Q5: Represent the following series: 1, 2, 4, 8, 16, 32, 64.

for(i=1 ; i<65 ; i*=2) i = 1; i = 1;

cout << i; while (i<65) do
 { {
 cout << i; cout << i;

 i*=2; i*=2;
 } }

 while (i<65);

--
Q6: Find the sum of the following s = 1 + 3 + 5 + 7 + … + 99.

for(i=1 ; i<=99 ; i+=2) i = 1; i = 1;
s = s + i; while (i<=99) do

 { {

 s = s + i; s = s + i;
 i+=2; i+=2;
 } }

 while (i<=99);

--
Q7: Find the sum and average of the 8 degrees of the student.
for(i=1 ; i<=8 ; i++) i = 1; i = 1;
{ while (i<=8) do

cin >> d; { {
s = s + d; cin >> d; cin >> d;

} s = s + d; s = s + d;

av = s / 8; i++; i++;
 } }
 av = s / 8; while (i<=8);

 av = s / 8;

--
Q8: Find the cub of n numbers, while the entered number is a positive.

Can’t be solve this problem
using For statement

cin >> x; do
while (x > 0) {
{ cin >> x;

c = x * x * x; c = x * x * x;
cin >> x; }

} while (x > 0);

WORK SHEET (4)

Iteration Statements

Using While Statement:

Q1: Write C++ program to find the summation of the odd numbers,

between 0 and 100.

Q2: Write C++ program to inverse an integer number.

For example: 765432 234567

Q3: Write C++ program to find G.C.D between m & n.

Q4: Write C++ program to display the first 100 odd numbers.

Using Do/While Statement:

Q5: What are the output of the following segment of C++ code:

int i;

i = 12;

do

{

cout << i << endl;

i --;

}

while (i > 0);

Q6: What are the output of the following segment of C++ code:

int count = 1;

do

{

cout << (count % 2 ? “****” : “+++++”) <<

endl; ++ count;

}

while (count <= 10);

Q7: Write C++ program that utilize looping and the escape sequence \t to

print the following table of value:

N 10*N 100*N 1000 * N

1 10 100 1000

2 20 200 2000
3 30 300 3000

4 40 400 4000

Hint:\t to print six spaces.

Using For Statement:

Q8: Write C++ program to read 7 marks, if pass in all marks (>=50) print

“pass” otherwise print “fail”.

Q11: Write C++ program to add the numbers between 1 and 100 and find its

average.

Q12: Write C++ program to print the following figures:
1

3 3 3

55555

7777777

999999999

7777777

55555

3 3 3

1

++++++++++
+++++++++

++++++++

+++++++

++++++

+++++

++++

+ + +

+ +

+

Q13: Write C++ program to find e from the following series:

e = 1 + (1/1!) + (1/2!) + (1/3!) + … + (1/n!)

Q14: Write C++ program to find e from the following series:

e = 1 + x + (x² / 2!) + (x³ / 3!) + … (xª / a!)

Q15: Write C++ program to read 10 marks, suppose the student pass if all

marks greater than or equal 50, and the average greater than or

equal 50. If student fails in some lessons then print the number of these

lessons, if student fails in average then print “fail in average”.

Q16: What is the output of the following C++ segment of code:

for (; ;)

{

cout << “enter your number: “;

cin >> x;

if (x % 2 == 0) continue;

if (x % 3 == 0) break;

cout << “Bottom of loop” << endl;

}

Q17: What is the output of the following C++ segment of code:

for (I = 0; I < 8; I ++)

{

if (I % 2 == 0) cout << I + 1 << endl;

else if (I % 3 == 0) continue;

else if (I % 5 == 0) break;

cout << “end program \n”;

}

cout << “end …”;

Q18: Write C++ program to print the following figure:

1

2 1

3 2 1
4 3 2 1

5 4321

Q19: Write C++ program to print the following searies:

1. Sum=1+2
2
+4

2
+…+n

2

2. Sum=1-3
x
+5

x
-…+n

x

3. Sum=1+1/1!+2/2!+3/3!+…+n/n! where n!=1*2*3*…*n

