bl a5 el aleill 5 55
s gl A Zals)

5 jlaall il sgadl

sl Cilgmal 335 S S pud

50l Ay il Al

A) g8 Chlacll
SQL <Ll

@m\ —aall

R\ L;'““J‘m
auld e 400 24

J5Y) sl Sl

Gililbad) ao) 68 il Bala)3 jda Jgaa

G ydal) € sa)
Introduction and installation of sql , Data normalization 1
Using wizards, and HELP types 2
Data definition types, Create data tables, saving and editing. 3.4
Input various data type using commands and keys
More on Alter table, Brows , Edit data 5.7
Data Manipulation language, Replace, Delete , Pack, Recall, 8-11
Zap data
data Sorting & Indexing 12-15

) g8 aualiay allhal) Ciy o g8 : SQL clilbind) 30 g8 Clpaabia) Bala Al 3 (e alad) Ciagll
SQL 4kl gt g 7 dbaill g clibal) 20 68 aa Jalaill g Lgilatlanaa g il

G pulall Glanal g GlSad LE and /S8 Caal) Zolla pddagrioal) Aadl)

sdadiiinial) 4y gy i) cldEn)

2 55 pos

Al 5y guud

Data Show <l (e

Laptop Jdsase cguls e

TUTORIALS POINT ¢ SQL Tutorial «Us
W3school (5 3SIY a8 sall

o WiN R

sdadiioeal) Adadi¥)

A Ale e Al

(e s 13)) Fae Lo At

s el g

230 OIS JS S G A (e 5 58S aal

Uubh wN PR

e 581 sl

(Quiz) “aalaad) Clilaiay)
A yed lilanal

Jadll Caiatiia jlatial
il dles il

Al 3l Sl

b wiN R

JoY) £ saad

485 (SQL bl ae) 8 Ll asaliall agh e 1508 Ul () S5 of ¢ (eantaill Ciagl)
(Data Normalization) <blall sk dsaal &l o)) ALaaYly dda 3001 Jasll 4y s
el

el 4 15 pualaal) 5a

Introduction and installation of sql , Data normalization :3_<alaall ¢l i

AN £ sl

(HELP) sacluall g1 53l 5 (Wizards) 3_aladl ciladlaall alasil (e Cllall Sty of 3 (ealadl) Chagd)
Aaliaal) Caills o)) agh 5 Al algall Jagutl cilild) 2o) 85)y} dadail L33 i siall

el 4 15 pualaal) 5a

Using wizards, and HELP types :3 salaal) ¢yl sic

AT FYAN
Jslas eLi) B sadly SQL (b Adliaad) bl g5l oy pad LaS Q! alaty o ¢ (papladl) Caagldl
Aol LSl Jaamti 5 Ledada 5 clill)
clebu 4 55 paladl e

Data definition types, Create data tables, saving and :3_alaall o) gis
.editing

& A £ s

SQL el sh alaiuly Jghaadl) bl g de siia g 1551 JA) e lllal) oSy o 3 eanladl) Ciagd)
Bslall el W) e Al ae Jalaill 5 cclld) diaiaddll

Cilelu 4 15 palaal) e

Input various data type using commands and keys :3_salaall ¢yl s

o) £ gaady)

A) ghaall JSLa haaid desiial) ALTER TABLE el sl alasiind (e Ul (Saty o (eanladl) caagd)
leailiad juadgsaec] Cada o ddl) Jia

el 4 15 _walaall 3

More on Alter table :3 yalaall) sis

A4S pgh s chdlite (5l Jlanl) 8 8 g sall bl Gial e S Ll ey (o (paslatl) Ciagd)
o (S and) im g

el 4 15 _walaall

Browse :5_galaall) gie

asbaad) &JM\J\

SQL alsh aladiuly Jslaal) Jals clilul) Gunaiy o pat Gllee lldall o G (easladll Clagl)
REMEN

Cilelu 4 15 palaal) e

Edit data :3_salaall o)) sic

Cralil) £ gandy)

) el Y1 agd s clgtisani s (DMIL) bl dallae il asalia e Ul Ca ety (s (pantatl) Ciagd)
.LG—I'. M.

el 4 15 pualaal) 5a

Data Manipulation language (DML) - Introduction :3_salaal) &l g

) &yu‘i\

Jslaadl Jals i) Aallead DELETE 5 REPLACE ol 5f alasiul (e Calldall oSy of 1 panladl) dagl)

el 4 15 ualaal) 5aa

DML - Replace, Delete :5_palaal) () gis

ilad) & gaad)

gla siul 5 daliall 35)3) agdl RECALL s PACK el sl aladin) 44 llall alaty (ff 3 (eanladll Cagd)
Likaie 48 gdaall il
Gilelu 4 13 palaal) baa

DML - Pack, Recall :3_qalaall o)) i

e gaal) £ gl

agd ae de yun Jgaall e ULl ies zeandd ZAP el alasind 46 Qi) &y of 1 (pandadl) Chagl)
oyl

Alelu 4 18 _palaal) 3aa

DML - Zap data :3_salaall o) gis

g L“,_a'm\ &\9,\“\}\

al o alaaialy 3Ll (gaelaai st S (Sorting) bl 5% 2dS Clldall alaty of 3 (panlail) Chagd)
saL

el 4 15 palaal) 5aa

Data sorting :3_salaall o)) i

e Gl &MY\

gla il elal Gawnd 8 sl s (Indexing) ool asede o llall ety o 1 (pandadl) dagd)
bl

el 4 15 _walaall

Introduction to Indexing :3_salaall &l sis

g @Uﬂ &JQMY\
bl e) 8 5ol (Cpanil L 5la) 5 Al jledll oLi] (pa Ul oSy) 3 (pandadl) iagd)

Alelu 4 15 _pualaal) 3aa

Creating and Managing Indexes :3_»alaall) sis

e ualdl) £ gand)

(il ae) @ elal o i) Jal gadl 5 dasiial) A jedll by Ul agdy of 3 (eanladl) Chagl)
JUATELERLI

el 4 15 _walaall 5aa

Advanced Indexing and Performance Considerations :3 salaall &) gie

SQL TUTORIAL

Simply Easy 1 earning by tutorialspoint.com

ABOUT THE TUTORIAL

SQL Tutorial

SQL is a database computer language designed for the retrieval and management of data in relational
database. SQL stands for Structured Query Language.

This tutorial will give you quick start with SQL.

Audience

This reference has been prepared for the beginners to help them understand the basic to advanced
concepts related to SQL languages.

Prerequisites

Before you start doing practice with various types of examples given in this reference, I'm making an
assumption that you are already aware about what is database, especially RDBMS and what is a
computer programming language.

Copyright & Disclaimer Notice

©AIl the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from
tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form
without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the
accuracy of the site or its contents including this tutorial. If you discover that the tutorialspoint.com site
or this tutorial content contains some errors, please contact us at webmaster@tutorialspoint.com

TUTORIALS POINT
Simply Easy Learning

Table of Content

SQL Tutorial.......ccooeieiiee 2
AUIENCE ... 2
PrereqUISIteScoouuiii e 2
Copyright & Disclaimer Notice............coouiiiiiiiiiiicieee e 2
SQL OVEIVIEW....ccoiiieeeeeeeeeeeeeeeeeeeeee e 15
What iS SQIL7 .o e e e e e e e e e e s e e e e e e anns 15
WY SQIL7? ..ottt e et e e e e e e e e e e e nees 15
153 0] P 16
SQL PrOCESS: .ottt 16
SQL COMMANAS:....oiiiiiiiiiiiiieie e 17
DDL - Data Definition Language:cccoooiiiiiiiieiiaeiiiiieeeee e 17
DML - Data Manipulation Language:...............uuuuuiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee 17
DCL - Data Control Language:ccccouuuumummmmineninenneeeeeeeeeeeeeeeeeeeeeeeeeeeees 17
DQL - Data Query Language:cceeeeeiiiiiiiiiiiee e eseiiieeee e 17
SQL RDBMS Concepts........ccceeeieiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee 18
What is fIeld?.....eeeeeeeee e 19
What IS rE€COIM, OF TOW? ...t e e e e e e e eeas 19
WHhat IS COIUMNT? ... 19
What isS NULL ValUE?......coee et a e e 19
SQL CONStraiNtS:ueeiieeiiiciiiiiee e 20
NOT NULL Constraint:ccoooiiiiiiieeeeeieeeeeeee e eeeeeeeeeas 20
DEFAULT CoNnStraint:........cccoiiiiiiiieeeeeeeeeeeeeee e eeeeeeeeeeas 21
b= 0 1 o] = PP 21
Drop Default Constraint:.........cccooooiiiie e 21
UNIQUE Constraint:........coooiiiiiiiieeeee e eeeeeeeeeas 21
EXAMPIE: .. e ———— 21
DROP a UNIQUE Constraint:........cccccccouummiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeas 22
PRIMARY K Y ..ooiiiiiiiieeiee ettt a e 22
Create Primary KeY:ooviiiiiiiiiiii e 22
Delete Primary KeY: . ..ot e e 23
FOREIGN K Y:...oiiiiiiiiiieiie ettt e e e e e eaaeens 24
D= 1 0 0] 0] L= PP 24
DROP a FOREIGN KEY Constraint:uuuuuermmiimmmeiiieiiieeeeeeeeeeeeeeeen 25
CHECK CoNnStraint:ooooiiiiieiieeeeeeeeee s 25
EXaMIPIE: .. e e e 25
DROP a CHECK Constraint:ccccocoiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeens 25
IN D X et e e e e e e e e e e e e e e e e e nnaaaaaeas 26
TUTORIALS POINT

Simply Easy Learning

D= 1 0 0] 0] L= PP 26

DROP a INDEX Constraint:........ccceuueiiiiieie e 26
Data INtegrity: ..o 26
Database Normalizationcooeuiviiiiiie e 27
Third RUIE Of INF:eeeeeeeeeeeeeeeeee e e e e e e eeeens 29
SQL RDBMS Databases..........coovuevieiiiieiiieeeeeeeee e 32
MYSQIL oo a e e e e e e e e e nnnaaes 32
HiS 0Ty e 32
T (0| (=Y SR 33
MS SQL SEIVE ... e 33
1S3 (o] R 33
oY= (0| (Y S 34
ORACLE ..o e 34
HIS Oy e e e 34
oYY (U] =Y 35
MS- ACCESS ... e 36
oY= (0| (< SR 36
SQL SYNAX i i iiiiieiiieii e 37
SQL SELECT Statement:.........cooooveeiieeeiieeeeeeeeeeeeeee e 37
SQL DISTINCT ClaUSE: wuuuiiiieieiiieeeeiiee ettt e e e 37
SQL WHERE ClaUSE:......ccuuuiiiieiie et 37
SQL AND/OR ClaUSE:ceeeeeeeeeeee et 37
SQL IN ClAUSE: .. et e e e e e s 38
SQL BETWEEN ClaUSE:ccoeeeeieeeeeeee et 38
SQL LIKE ClaUSE:cevenieeeeeeee et 38
SQL ORDER BY ClaUSE:u it 38
SQL GROUP BY ClaUSE:.....ccooeiiieeeeiiee ettt 38
SQL COUNT ClaUSE: ... cceeeeeeeeeeee et e e e e e e e 38
SQL HAVING ClaUSE:coeeeeeeeeeeeeeeeeeeee et 38
SQL CREATE TABLE Statement:.........ccoooiviiiieiiiieee e 38
SQL DROP TABLE Statement:c.ocuuiiiiiiiiie e 39
SQL CREATE INDEX Statement:cccooooeiiiiiiieeeee e 39
SQL DROP INDEX Statement:oouueiiiiiiee e 39
SQL DESC Statement:..........oooiiii e 39
SQL TRUNCATE TABLE Statement:.........ccoovviiviiiiieiiieeeeeeeeeevieee e 39
SQL ALTER TABLE Statement:co.ooeiiiiiieeeeeeee e 39
SQL ALTER TABLE Statement (Rename): ..o 39
SQL INSERT INTO Statement:uueeeiiiiiiiiiiieeeeee e 39
SQL UPDATE Statement:couvuiiiieeee e 39
TUTORIALS POINT

Simply Easy Learning

SQL DELETE Statement:ccoueeeee e 40

SQL CREATE DATABASE Statement:cccciiiiieieeiiiieeee e 40
SQL DROP DATABASE Statement:cccooviiiiiiiiieee e 40
SQL USE Statement:ccuvviiiieeiieceeeee e 40
SQL COMMIT Statement:oooooeiiiieeeeee s 40
SQL ROLLBACK Statement:..........ooooiiiiiiiiieeeeeee s 40
SQL Data TYPES ovvvviiiiieieeeeeeeeetie e 41
Exact Numeric Data TYPES:...uuuiiii i 41
Approximate Numeric Data TYPeS:oooeiiieiiiiiii e 41
Date and Time Data Types:ccccoiiiiiiiiiiiiiie e 42
Character Strings Data TYpes:cooveieieieeeeeeeeeeeeeeeeee s 42
Unicode Character Strings Data Types:uuuuviiiiiiiiiiiiiiiiieieeeeeeeeeeeeee 42
Binary Data TYPeS:...coo o 42
MiSC Data TYPeS: ... 43
SQL OPerators.........uuiiiiieeieeeecee e 44
What is an Operator in SQL?oovviiiiiiiiiieiiee, 44
SQL Arithmetic Operators:cooveiiiiieeeeeeeeeeeee s 44
SQL Comparison Operators:ccceeeeeeiiiiie e 45
SQL Logical OPErators:ccccueiieeiiiieeeeiiiiee et e e 47
SQL EXPreSSiONScooeeiieeiiiiieee e 50
SYNEAX: et ————————— 50
SQL - Boolean EXPressioNnS:ccooeeiieiiieieeeeeeeeeee e 50
SQL - Numeric EXpression: ... 51
SQL - Date EXPresSionS:cooviiiiiiiieeeeeeeeee e 51
SQL CREATE Database..........cccccoeeieeeiiiiiiccie e 53
SYNEAX: ettt e e e e e 53
EXAMPIE: .. e 53
DROP or DELETE Databasecccccoeevvveeiiiiciiiiieeeeeeeeiinn 54
SYNEAX: et ——————— 54
D= 0 1 o] = PP 54
SQL SELECT Database...........cuuciiiiiiiiiiiiiiiiiiiiee e 55
SYNEAX: ettt e e e e e e 55
D= 1 0 0] 0] L= PP 55
SQL CREATE TabI€ccvneeeeeeeeeeeeeeee e 56
SYNEAX: et ————————— 56
SYNEAX: et ———————— 56
D= 0 1 o] = PP 57
E XML e 57
SQL DROP or DELETE Table.......ccooovvviiiiiieiieeeeecee e, 59
TUTORIALS POINT

Simply Easy Learning

SYNEAX: .ttt e e e e e e e 59

EXAMPIE: .. e ———— 59
SQL INSERT QUEIY ... 60
YA, ettt 60
EXaMIPIE: .. e e e e 60
Populate one table using anothertable: ..., 61
SQL SELECT QUETY ... 62
SYNEAX: ..ttt e 62
EXAMPIE: .. e ———— 62
SQL WHERE ClauSecccovuiiiiiiiiiiiceeeeee e 64
Y NEAX: ettt 64
EXaMIPIE: .. e e e e 64
SQL AND and OR Operatorscccuveeeeeviiiiieeeeeie e 66
The AND OPEIatOr:uiiiiiiiiiiiieee ettt 66
SYNEAX: ..ttt e e 66
EXAMPIE: . e ——— 66
The OR OPErator:c it e e e e aeenaes 67
SYNEAX: ettt e e e e e e e 67
EXAMPIE: .. e 67
SQL UPDATE QUETY....cceeiiee ettt 69
031 €= 69
b= 0] o] = PP 69
SQL DELETE QUEIY ... 71
L=) APPSR 71
= 1 0 0] 0] L= PP 71
SQL LIKE ClauSe.......coiiieiieeeeecie et 73
YN AX. ittt e 73
EXAMIPDIE: e 74
SQLTOP Clauseccoeeeiieeeieeeeeeeeeeeeeeeeeeeeeee, 75
SYNEAX: et ——————— 75
b= 0] o] = PP 75
SQL ORDER BY Clause........cccuuuiiiiiiieeeeeeiiciee e 77
SYNEAX: ettt e e e e e e 77
EXAMPIE: . e ———— 77
SQL Group BY....ooeeeeeeeeeeeeeeeeeeeeeeee e 79
031 €= 79
D= 0 1 o] = PP 79
SQL Distinct Keyword ... 81
SYNEAX: et —————— 81
TUTORIALS POINT

Simply Easy Learning

D= 1 0 0] 0] L= PP 81

SQL SORTING ReSUItS......uciiiiiiiiiieeeeeeeeeeeeeee e, 83
YA ettt e e 83
EXAMPIE: .. e 83
SQL Constraints.........cccooeiiiiiiiiiiicece e 85
NOT NULL ConStraint:ovueiiiiiieeeieeeeccs e 85
DEFAULT Constraint:..........ovuuiiiiiieeeeeeeis e 86
E XM . e 86
Drop Default Constraint:..........ccooiiiiiiiiiiiicc e 86
UNIQUE ConsStraint:ccooiiiiieeee et eeeeeee e 87
D= 1 0 0] 0] L= PP 87
DROP a UNIQUE Constraint:........cccccooouuuuiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeens 87
PRIMARY K Y : ... iiiiiiiiiiiiiiie ittt eeeeeeeeeeees 88
Create Primary KeY:ooooviiiiiiiee e 88
Delete Primary KeY: . ..o 89
FOREIGN K Y: .. .oiiiiiiiieiiieie ittt eeeeeeeeeees 89
EXAMPIE: .. e ———— 89
DROP a FOREIGN KEY Constraint:ccccvvuviiiiiiiiiieiieeeeeeeeeeeeeeeeeeeen 90
CHECK CoNnStraint:oooiiiiiiiiiieeeeeeeee e 90
EXAMPIE: .. e ————— 90
DROP a CHECK Constraint:ccooiviiiiiiie e 91
IN D E X . oottt e e e e e e eees 91
D= 1 0 0] 0] L= PP 91
DROP a INDEX Constraint:........cccccooiiiiiiiiiiiiiieiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 91
Dropping ConstraintS:..........uuiiiiiiii e 92
Integrity CoNSIraints:cooii e 92
SQL JOINS .. 93
SQIL JOIN TYPES: .ttt 94
INNER JOIN ...ttt e e e e e e e e e eeeeas 94
L=) APPSR 94
D= 1 0 0] 0] L= PP 94
LEFT JOIN oo 95
031 €= 95
b= 0] o] = PP 95
RIGHT JOINt e e e e e e eeeeees 96
SYNEAX: ..ttt e e e e e e e 96
EXAMPIE: . e ———— 96
0 | T | 97
SYNEAX: ettt e e e e e e e e 97
TUTORIALS POINT

Simply Easy Learning

D= 1 0 0] 0] L= PP 98

SELF JOIN .o 99
YA ettt e e 99
D= 0] o] = PP 99
CARTESIAN JOIN .o 100
SYNEAX: e ——————— 100
D= 0 1 o] = PP 100
SQL UNIoNS ClauSecooveiiiiiiiieeeeeeeeeeiee e 102
SYNEAX: et a e e e 102
= .01 0] L= PR 102
The UNION ALL ClauSe:uuuuieiiieiiiiieiieeeeeeeee et 103
SYNEAX: ettt ————— 103
D= 0 T o] = PP 104
EXAMPIE: e 105
SQL NULL ValUES.......uiieeieie e 109
SYNEAX: ettt a e e e e e e 109
EXAMPIE: .. e ————— 109
SQL Alias Syntax........cccooeeeiiiiiiiiie e 111
SYNEAX: ..ttt e e e e e e e e aaaa 111
EXaMIPIE: .. e 111
SQL INAEXES ... 113
The CREATE INDEX Command:ccuuiiiiiiiiiiiiiiiieeee e 113
Single-Column INAEXES:uiiiiiiiei e 113
UNIQUE INAEXES: ..eeniiieiiieeeece et 113
ComPOSIte INAEXES: ...oovviiiiiiiiiieeieee e 114
IMPICIE INAEXES: ... 114
The DROP INDEX COmMMANG:cceiiiiiiiiiiieeiiiieeeeeeee e 114
When should indexes be avoided? ..., 114
SQL ALTER TABLE Command...........cccceeviiiiiiiiiiiiiiieeeeees 115
SYNEAX: ettt —————— 115
EXAMPIE: e e 116
SQL TRUNCATE TABLE ... 118
SYNEAX: ettt e e e e e e e e aae 118
EXAMPIE: .. e 118
SQL - USINg VIEWSccooeeiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee, 119
Creating VIBWS:ooiiiiiieiieeeee e 119
D= 0 1 o] = PP 119
The WITH CHECK OPTION:.....ouiiiiiiiiiieeee e 120
Updating @ VIEW: ... 120
TUTORIALS POINT

Simply Easy Learning

Inserting ROWS iNt0 @ VIEW: 121

Deleting Rows into @ VIEW:......cooooiiiiiiiiicieee e 122
Dropping VIEWS:cii et 122
SQL HAVING CLAUSE ... 123
SYNEAX: ettt ——————— 123
= 1 1]] [PN 123
SQL TransactionScccovviiiieeiice e 125
Properties of Transactions:cccccoiiiiiiiiiiiiiiiiieeeeeeeee e 125
Transaction CONEIOL:uuiiiiiiiiiieeieeeeeeee e, 125
The COMMIT COMMANG:eiiiiiiiiiiiiiiiieeeeeeeee e 125
EXAMPIE: .. 126
The ROLLBACK COmMMAaNd:ccuviiiiiiiiiiiiiiiieeeeeeeeeeeee e 126
= 1 1] o] = N 126
The SAVEPOINT Command:ccooiiiieiiiiiiiiiiiee e e e e e 127
D= .01 0] L= UUR 127
The RELEASE SAVEPOINT Command:........cccevvvvviiiiiiiiiieeeeieeeeeeeeeee, 128
The SET TRANSACTION Command:cceeeeeiiiiiiiieeeeeeeiniiiiieneeeeaannes 129
SQL Wildcard Operators............ccoveeeeiiieeiiiiiiieeeeeeeeeeen 130
SYNEAX: .ttt a e e e e e e e aaaan 130
EXaMIPIE: .. e 131
SQL Date FUNCHiONS.......ccuviiieeici e 132
ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)............... 134
ADDTIME(EXPIT,EXPI2) .ceeeeeeeeeeiiieeeeea e ettt e e e e e e ieseeeee e 135
CONVERT_TZ(dt,from_tZ,10_tZ) ...ceeviiiiiiiiiee e 135
L1 I 7 I = U 135
CURRENT_DATE and CURRENT _DATE().....cceeteeeeeeeeeeeeeiienee 136
CURTIME() +tveeeeeeeetttiiiee e e e e ettt e e e e e et e e e e e e e s e e e e e e e s ennnnnaneaeeeaaaanns 136
CURRENT _TIME and CURRENT_TIME().......cceeeieieeeeeeeeeeiee 136
CURRENT_TIMESTAMP and CURRENT_TIMESTAMP()cccccouvnnnnne 136
DATE(EXPI) ettt ettt e e e e e e e e e neeeaaens 136
DATEDIFF(EXPIT1,8XPI2) oevetiiieeieeeee et e e e et e e e e e e e eea s 136
DATE_ADD(date,INTERVAL eXpr unit),......ccceeereeeeiiiiiiiieeee e 137
DATE_SUB(date,INTERVAL eXpr unit)...........ccceeeeiiiiiiiiiieeee e 137
DATE_FORMAT (date,format)ccccccooummmmimiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeee 138
DATE_SUB(date,INTERVAL expr unit)........cccceeeeeeeiiiiiiiiieee e 140
DN (o F= 1 (=) SRR 140
DAYNAME(dAE) ...cooieeeeeeeeeeee et eeeeeees 140
DAYOFMONTH(AAe) ..ot e e 140
DAYOFWEEK(AALE) ... et 140
TUTORIALS POINT

Simply Easy Learning

DAYOFYEAR(GAE)....... oo eeeseeeseeeeeeeseeeeeeeseee e eeeesseesseeeseeeseeeseese 140

EXTRACT (unit FROM date)..........uvviiiiiiiiiiieece e 141
FROM_DAYS(N) .ttt 141
FROM_UNIXTIME (unix_timestamp)occcuuiiiiieiiiiiiieeeee e 141
FROM_UNIXTIME(unix_timestamp,format)...........cccccvvveeiiiiiiiieiiiennnnnnn. 141
HOUR(TIME) ...ttt 142
LAST _DAY(AE) .eeeeeieeiiiiiiiieiee et 142
LOCALTIME and LOCALTIME() «..ueereeeeeee et 142
LOCALTIMESTAMP and LOCALTIMESTAMP()...ccceeeiiiiiiiiiieeeeeeeiiee 142
MAKEDATE((year,dayofyear)uviiiiiiiiiiiieecee e, 142
MAKETIME (hour,minute,second)............oooouiiiiiiiiiiiie 143
MICROSECOND(EXPI)....eteeeieeeeeaiaiieeeeeeeeeeeesiteeeeeaaeeseanneeeeeeeeeeeennneeees 143
MINUTE(IIME) ettt 143
MONTH(AAEE). ...ttt 143
MONTHNAME(dALE) ... 143
INOWV () ettt ettt ettt e e e e e e e e e e e e e ennneneeeaaens 144
PERIOD_ADD(P,N) ... 144
PERIOD_DIFF(P1,P2) ..o 144
QUARTER(AALE) ...eteeeeeee ettt e e 144
SECOND(IME)...eteeeee e 145
SEC_TO_TIME(SECONAS)......uutiiiiiieieiiiiiiieee ettt e e 145
STR_TO _DATE(str,format).........coovviieiiiiiiicc e, 145
SUBDATE(date,INTERVAL expr unit) and SUBDATE(expr,days)......... 145
SUBTIME(EXPIT1,EXPI2) c.ceiiiiiiieeeeeee ettt e et e e e e e e e e e e anes 146
SYSDATE() ceeeeeiiiitite ettt 146
TIME(©XPI) -ttt ettt et eaeaaaaaaaens 146
TIMEDIFF(EXPIT,8XPI2) ...eeeeeeeeeeieiieeeeeeeeeeeeee et a e e e e e e e e e e e 146
TIMESTAMP (expr), TIMESTAMP(eXPr1,eXpr2)........cccccceeeeiniurreeeeeeennnne 147
TIMESTAMPADD(unit,interval,datetime_expr)ccccccieeeiiiiiinneennn, 147
TIMESTAMPDIFF (unit,datetime_expr1,datetime_expr2)....................... 147
TIME_FORMAT (time,format)ccoooiiiiiieeee e 148
TIME_TO_SEC(IIME) ..eetieieiiieieieee e 148
TO_DAYS(AAtE) .. 148
UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date).......ccccevvveeeiiiiiiiiennnn. 148
UTC_DATE, UTC_DATE() «eeieeiiiiiiiieeeee et 149
UTC_TIME, UTC_TIME() +eeeeeeeiiiiitieiieee e 149
UTC_TIMESTAMP, UTC_TIMESTAMP() ..cevviiiieeiiiiiiiieeeeeeeeeeee 149
WEEK(AAte[,MOdE])eeeeeeeeiiiiiiiiiie et 149
WEEKDAY (AE) ... eeeeeeiieee et e e e 150
TUTORIALS POINT

Simply Easy Learning

WEEKOFYEAR(ALE). ..o 150

YEAR(AAE) ..eeeieeeeieieiiee ettt ettt e e e e e e e e e e e 150
YEARWEEK(date), YEARWEEK(date,mode)ccccvveeeiiiiiiiieneeeeane 151
SQL Temporary Tables.............ccoovveiiiiiiiiieeeeeeeeeeeeee, 152
EXaMPIE ... 152
Dropping Temporary Tables: ... 153
SQL Clone Tables.......coooiiiiiiiiiee e 154
EXAMPIE: . s 154
S P T ——————————— 154
S D 2 ————————————— 154
S Bl ————— 155
SQL Sub QUENIES ... 156
Subqueries with the SELECT Statement:............ccccooeiiiiiiiiiiie 156
EXaAMPIE: e 157
Subqueries with the INSERT Statement:ccccoooiiiiiiie 157
D= .01 0] L= USSR 157
Subqueries with the UPDATE Statement: ..o, 158
EXAMPIE: ... 158
Subqueries with the DELETE Statement:................coooiiiiiiiiiiiicce 158
EXaMIPIE: .. e 159
SQL — USIiNg SEQUENCES........uuiiiieieeeeieeeiiiee e 160
Using AUTO_INCREMENT COIUMN: ...oooiiiiiiiiiiiiee e 160
D= .01 0] L= SRR 160
Obtain AUTO_INCREMENT ValUEs:ccvvveiiiiiiiiiiieee e 161
oy I b e g o [SR 161
o |l e] o [PSS 161
Renumbering an Existing Sequence:ccuuuviiiiiiiiiiiiiiiiiieeeeeeeeeeee 161
Starting a Sequence at a Particular Value:............ccccooooeiviiieiicieeee e, 161
SQL — Handling Duplicatescccovveviiiiiiiiiieeeeeee 163
SYNEAX: ettt —————— 163
EXAMPIE: e e 163
SQL INJectioncoooiiiii 165
Preventing SQL INjection:.........oooiiiiii e 166
The LIKE QUANAAIY:oiiiiiiiiiiieeeee et 166
SQL Useful Functionscooooiiiiiiiiiieeeeeeee, 167
ABS(X) .ttt e e 176
ACOS(X) et as 176
ASIN(X) ettt e e e e e e e e e e e e e e e e e raaaaaaeas 176
ATAN(X) et e e e e e et e e e e e e e e e e e e e e e eaaaens 176
TUTORIALS POINT

Simply Easy Learning

ATANZ(Y,X) cooeeeeeeeeeeeeeeeeeeeeeeee e ee e eees e es e ee e eeee s s e se e eseeeseeesesee 177

BIT_AND(EXPreSSION) .covviiiiiiei e it 177
BIT_COUNT(nNUMErIC_ValUB)cceieeeiiiiiee e 177
BIT_OR(EXPreSSION)....cciiiiiiieieieeeeeeiieie e e e ettt e e e e e e e e e e e e e e 177
(07 =1 G PR PPRR 178
CEILING(X) 1ttt ettt ettt et e et e e e e s e e e enneeeaeenees 178
CONV(N,from_base,to_base)ccccereiiiiiiiiiii e 178
(610 1570, U EETP T SOPPPRRRRT 178
(610 I 1§ TP PUPPPPRRRR 179
DEGREES(X) . iittteee ittt 179
E P (X) et 179
FLOOR(X) . ttetetee ettt e e et e e e e e e e e e e e e e e e ennnnneeeaaens 179
FORMAT(X,D) ettt 180
GREATEST(n1,n2,n3,..........)ttt 180
INTERVAL(N,N1,N2,N3,..........) et 180
INTERVAL(N,N1,N2,N3,..........) et e e e ns 180
LEAST(NT,NZ2NS,NA .oo) et 181
LOG(X) -ttt ettt ettt ettt ettt e et e e e neee 181
[0 L= 70,0 I PEPPT 181
[0 1 [0, PR 181
MOD(N,M) e 181
(@O (1) T PRSP 182
P L) e aaeas 182
POWV (XY) ettt e e 182
POWER(X,Y) ettt e e 182
RADIANS (X) -eetteeeeeeee ettt e e e et e e e e e e st e e e e e e e e snnnneeeaaens 182
@ 10 | N T RSP 183
ROUND (X,D) .ttt 183
STGIN (X)) ettt 183
SIN (K ettt 183
SQIRT (X)) - ttettte e ettt e aas 184
STD(EXPrESSION) .ceiiiiiiiiiiiieee e 184
STDDEV(EXPIrESSION) ..ciiiiiiiiiiiieiieeee e 184
TANX) e 184
TRUNCATE(X,D) ettt e e e 184
AS CHI(SE) et 186
BIN(N) e 187
BIT _LENGTH(SI)eeiiiieeeeieieeee et 187
CHAR(N,... [USING charset_name])..........ccceeeeeeeiieieeieiececceccciis 187
TUTORIALS POINT

Simply Easy Learning

CHAR_LENGTH(SI) ..o seeeeeeeeeeeeseseeeeseee e eeeeeeeeeseesseeeeeee 187

CHARACTER _LENGTH(SI) ceeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 188
CONCAT(Sr,Sr2, ...) e 188
CONCAT_WS(separator,str1,str2,...) ...c..ueeeeeeieieiiiiieeeee e 188
CONV(N,from_base,to_base)ccccceeeieiiiiiiieee e 188
o I N TS {2 1 X S 189
EXPORT_SET((bits,on,off[,separator[,number_of bits]])........cccccccvvrrrenn. 189
FIELD(Str,str1,Str2,Str3,...) oo 189
FIND _IN_SET(Str,StrliSt)......ccooiiiiiiiiiee e 189
FORMAT (X,D) e i ittt eeeeeeees 189
HEX(N O S it eeeeeeeeeees 190
INSERT(Str,pos,len,NEWSHI)... ... 190
INSTR(SI,SUDSEI) .. 190
OS] (3 { 191
LEFT(SIIEN) oo 191
LENGTH(SI) coiiieeeeeeeeeeee e 191
LOAD_FILE(file_Name)ccceeeeiiieeeeieee e 191
LOCATE(substr,str), LOCATE(substr,str,p0S).......cccoeiiiiiiiiiiiiiiinne 191
LOWER(S) ettt e e e e e e 192
LPAD(Str,1en,padstr).......coooe oo 192
LTRIM(SEE) oot 192
MAKE_SET(bits,Str1,Str2,...) oo 192
MID(SEF,POS, I8N 193
L0 1O I {1 T USRS 193
OCTET_LENGTH(SI) ceeeieiiiieeeeeeeeee e 193
ORD(S) ettt ettt e e e e e e e e e e e e e e e eaeeeeaaann 193
POSITION(SUDSEr IN Str) ..eeeieieiiiieiieee e 193
QUOTE(SI) ettt e e e e e e s e e e nees 193
expr REGEXP pattern ...t 194
REPEAT(S,COUND) ... 194
REPLACE(str,from_str,to_str)c.oeeeiiiiiie e 194
Y o]] 1) 195
] I3 (1T o) P 195
RPAD(Str,1en,padstr) ... 195
I 1Y) P 195
SOUNDEX(SI) .ttt e e e e 196
expr1 SOUNDS LIKE €XPr2coouuiiiiieiiiieeeeeeeeeiee e 196
SPACE(N) ettt ———— 196
STRCMP(Sr1, SIr2) ..o 196
TUTORIALS POINT

Simply Easy Learning

SUBSTRING(SI,POS) .eeiieiiiiiiiiieee ettt e e 197

SUBSTRING(Str FROM POS)..ccciiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 197
SUBSTRING(SIr,POS,IEN) ... 197
SUBSTRING(str FROM pos FOR I€N)ceeviiiiiiiiiiiiiiieee e 197
SUBSTRING_INDEX(str,delim,count)...........ccoooiiiiiiiiiiiiiiieeee 197
TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str) 198
TRIM([remstr FROM] Str)evviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e, 198
UCASE(SI) et 198
UNHEX(SIF) ettt 198
] e 1) 199
TUTORIALS POINT

Simply Easy Learning

SQL Overview

QL tutorial gives unique learning on Structured Query Language and it helps to make practice on SQL

commands which provides immediate results. SQL is a language of database, it includes database creation,
deletion, fetching rows and modifying rows etc.

SQL is an ANSI (American National Standards Institute) standard, but there are many different versions of the
SQL language.

What is SQL?

SQL is Structured Query Language, which is a computer language for storing, manipulating and retrieving data
stored in relational database.

SQL is the standard language for Relation Database System. All relational database management systems like
MySQL, MS Access, Oracle, Sybase, Informix, postgres and SQL Server use SQL as standard database
language.

Also, they are using different dialects, such as:
e MS SQL Server using T-SQL,
e Oracle using PL/SQL,

e MS Access version of SQL is called JET SQL (native format) etc.

Why SQL?

e Allows users to access data in relational database management systems.

e Allows users to describe the data.

e Allows users to define the data in database and manipulate that data.

e Allows to embed within other languages using SQL modules, libraries & pre-compilers.

e Allows users to create and drop databases and tables.

TUTORIALS POINT
Simply Easy Learning

o Allows users to create view, stored procedure, functions in a database.

e Allows users to set permissions on tables, procedures and views

History:

e 1970 --Dr. E. F. "Ted" of IBM is known as the father of relational databases. He described a relational model
for databases.
1974 -- Structured Query Language appeared.

e 1978 -- IBM worked to develop Codd's ideas and released a product named System/R.

e 1986 -- IBM developed the first prototype of relational database and standardized by ANSI. The first relational
database was released by Relational Software and its later becoming Oracle.

SQL Process:

When you are executing an SQL command for any RDBMS, the system determines the best way to carry out your
request and SQL engine figures out how to interpret the task.

There are various components included in the process. These components are Query Dispatcher, Optimization
Engines, Classic Query Engine and SQL Query Engine, etc. Classic query engine handles all non-SQL queries,
but SQL query engine won't handle logical files.

Following is a simple diagram showing SQL Architecture:

SQL Query
Query Language < Parser + Optimizer
Processor
y File Manager
DBMS +
Engine Transaction manager

Physical Database

TUTORIALS POINT
Simply Easy Learning

SQL Commands:

The standard SQL commands to interact with relational databases are CREATE, SELECT, INSERT, UPDATE,
DELETE and DROP. These commands can be classified into groups based on their nature:

DDL - Data Definition Language:

Command Description

CREATE Creates a new table, a view of a table, or other object in database
ALTER Modifies an existing database object, such as a table.

DROP Deletes an entire table, a view of a table or other object in the database.

DML - Data Manipulation Language:

Command Description
INSERT Creates a record
UPDATE Modifies records
DELETE Deletes records

DCL - Data Control Language:

Command Description
GRANT Gives a privilege to user
REVOKE Takes back privileges granted from user

DQL - Data Query Language:

Command Description
SELECT Retrieves certain records from one or more tables
TUTORIALS POINT

Simply Easy Learning

SQL RDBMS Concepts

What is RDBMS

DBMS stands for Relational Database Management System. RDBMS is the basis for SQL and for all

modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.

A Relational database management system (RDBMS) is a database management system (DBMS) that is based on

?

the relational model as introduced by E. F. Codd.

What is table?

The data0 in RDBMS is stored in database objects called tables. The table is a collection of related data entries

and it consists of columns and rows.

Remember, a table is the most common and simplest form of data storage in a relational database. Following is

the example of a CUSTOMERS table:

et ————————— f————— e ——————— e —————— +
| ID | NAME | AGE | ADDRESS | SALARY
B e - fomm - e +
| 1 | Ramesh | 32 | Ahmedabad | 2000.00

| 2 | Khilan | 25 | Delhi | 1500.00

| 3 | kaushik | 23 | Kota | 2000.00

| 4 | Chaitali | 25 | Mumbai | 6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00

| 6 | Komal | 22 | MP | 4500.00

| 7 | Muffy | 24 | Indore | 10000.00
ot +-———- fomm - e +
TUTORIALS POINT

Simply Easy Learning

What is field?

Every table is broken up into smaller entities called fields. The fields in the CUSTOMERS table consist of ID,
NAME, AGE, ADDRESS and SALARY.

A field is a column in a table that is designed to maintain specific information about every record in the table.

What is record or row?

A record, also called a row of data, is each individual entry that exists in a table. For example, there are 7 records
in the above CUSTOMERS table. Following is a single row of data or record in the CUSTOMERS table:

fmm t———— o ———— o ——— +
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

et TR e fommmmmmm o B it +

A record is a horizontal entity in a table.

What is column?

A column is a vertical entity in a table that contains all information associated with a specific field in a table.

For example, a column in the CUSTOMERS table is ADDRESS, which represents location description and would
consist of the following:

| Ahmedabad |
| Delhi |

| Kota |

Mumbai |

Bhopal |

MP

What is NULL value?

A NULL value in a table is a value in a field that appears to be blank, which means a field with a NULL value is a
field with no value.

It is very important to understand that a NULL value is different than a zero value or a field that contains spaces. A
field with a NULL value is one that has been left blank during record creation.

TUTORIALS POINT
Simply Easy Learning

SQL Constraints:

Constraints are the rules enforced on data columns on table. These are used to limit the type of data that can go
into a table. This ensures the accuracy and reliability of the data in the database.

Constraints could be column level or table level. Column level constraints are applied only to one column, whereas
table level constraints are applied to the whole table.

Following are commonly used constraints available in SQL:

NOT NULL Constraint: Ensures that a column cannot have NULL value.

DEFAULT Constraint: Provides a default value for a column when none is specified.

UNIQUE Constraint: Ensures that all values in a column are different.

PRIMARY Key: Uniquely identified each rows/records in a database table.

FOREIGN Key: Uniquely identified a rows/records in any another database table.

CHECK Constraint: The CHECK constraint ensures that all values in a column satisfy certain conditions.
INDEX: Use to create and retrieve data from the database very quickly.

NOT NULL Constraint:

By default, a column can hold NULL values. If you do not want a column to have a NULL value, then you need to
define such constraint on this column specifying that NULL is now not allowed for that column.

A NULL is not the same as no data, rather, it represents unknown data.
Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns, three of which,
ID and NAME and AGE, specify not to accept NULLs:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

)i

If CUSTOMERS table has already been created, then to add a NOT NULL constraint to SALARY column in Oracle
and MySQL, you would write a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18, 2) NOT NULL;

TUTORIALS POINT
Simply Easy Learning

DEFAULT Constraint:

The DEFAULT constraint provides a default value to a column when the INSERT INTO statement does not provide
a specific value.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, SALARY
column is set to 5000.00 by default, so in case INSERT INTO statement does not provide a value for this column.
then by default this column would be set to 5000.00.

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2) DEFAULT 5000.00,
PRIMARY KEY (ID)

)i

If CUSTOMERS table has already been created, then to add a DFAULT constraint to SALARY column, you would
write a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18, 2) DEFAULT 5000.00;

Drop Default Constraint:
To drop a DEFAULT constraint, use the following SQL:

ALTER TABLE CUSTOMERS

ALTER COLUMN SALARY DROP DEFAULT;

UNIQUE Constraint:

The UNIQUE Constraint prevents two records from having identical values in a particular column. In the
CUSTOMERS table, for example, you might want to prevent two or more people from having identical age.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, AGE
column is set to UNIQUE, so that you can not have two records with same age:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,

TUTORIALS POINT
Simply Easy Learning

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL UNIQUE,
ADDRESS CHAR (25) ,

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

)i

If CUSTOMERS table has already been created, then to add a UNIQUE constraint to AGE column, you would write
a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY AGE INT NOT NULL UNIQUE;

You can also use following syntax, which supports naming the constraint in multiple columns as well:
ALTER TABLE CUSTOMERS

ADD CONSTRAINT myUniqueConstraint UNIQUE (AGE, SALARY) ;

DROP a UNIQUE Constraint:

To drop a UNIQUE constraint, use the following SQL:

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myUniqueConstraint;
If you are using MySQL, then you can use the following syntax:

ALTER TABLE CUSTOMERS

DROP INDEX myUniqueConstraint;

PRIMARY Key:

A primary key is a field in a table which uniquely identifies each row/record in a database table. Primary keys must
contain unique values. A primary key column cannot have NULL values.

A table can have only one primary key, which may consist of single or multiple fields. When multiple fields are used
as a primary key, they are called a composite key.

If a table has a primary key defined on any field(s), then you can not have two records having the same value of
that field(s).

Note: You would use these concepts while creating database tables.
Create Primary Key:

Here is the syntax to define ID attribute as a primary key in a CUSTOMERS table.

TUTORIALS POINT
Simply Easy Learning

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

)i

To create a PRIMARY KEY constraint on the "ID" column when CUSTOMERS table already exists, use the
following SQL syntax:

ALTER TABLE CUSTOMER ADD PRIMARY KEY (ID);

NOTE: If you use the ALTER TABLE statement to add a primary key, the primary key column(s) must already have
been declared to not contain NULL values (when the table was first created).

For defining a PRIMARY KEY constraint on multiple columns, use the following SQL syntax:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID, NAME)

);

To create a PRIMARY KEY constraint on the "ID" and "NAMES" columns when CUSTOMERS table already exists,
use the following SQL syntax:

ALTER TABLE CUSTOMERS

ADD CONSTRAINT PK CUSTID PRIMARY KEY (ID, NAME);

Delete Primary Key:

You can clear the primary key constraints from the table, Use Syntax:

ALTER TABLE CUSTOMERS DROP PRIMARY KEY ;

TUTORIALS POINT
Simply Easy Learning

FOREIGN Key:

A foreign key is a key used to link two tables together. This is sometimes called a referencing key.
Foreign Key is a column or a combination of columns whose values match a Primary Key in a different table.

The relationship between 2 tables matches the Primary Key in one of the tables with a Foreign Key in the
second table.

If a table has a primary key defined on any field(s), then you can not have two records having the same value of
that field(s).

Example:

Consider the structure of the two tables as follows:

CUSTOMERS table:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

)

ORDERS table:

CREATE TABLE ORDERS (
ID INT NOT NULL,
DATE DATETIME,
CUSTOMER ID INT references CUSTOMERS (ID),
AMOUNT double,

PRIMARY KEY (ID)

);

If ORDERS table has already been created, and the foreign key has not yet been set, use the syntax for specifying
a foreign key by altering a table.

ALTER TABLE ORDERS

ADD FOREIGN KEY (Customer ID) REFERENCES CUSTOMERS (ID) ;

TUTORIALS POINT
Simply Easy Learning

DROP a FOREIGN KEY Constraint:

To drop a FOREIGN KEY constraint, use the following SQL:

ALTER TABLE ORDERS

DROP FOREIGN KEY;

CHECK Constraint:

The CHECK Constraint enables a condition to check the value being entered into a record. If the condition
evaluates to false, the record violates the constraint and isn’t entered into the table.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, we add a
CHECK with AGE column, so that you can not have any CUSTOMER below 18 years:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL CHECK (AGE >= 18),

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

If CUSTOMERS table has already been created, then to add a CHECK constraint to AGE column, you would write
a statement similar to the following:

ALTER TABLE CUSTOMERS
MODIFY AGE INT NOT NULL CHECK (AGE >= 18);
You can also use following syntax, which supports naming the constraint in multiple columns as well:

ALTER TABLE CUSTOMERS

ADD CONSTRAINT myCheckConstraint CHECK (AGE >= 18);
DROP a CHECK Constraint:
To drop a CHECK constraint, use the following SQL. This syntax does not work with MySQL.:

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myCheckConstraint;

TUTORIALS POINT
Simply Easy Learning

INDEX:

The INDEX is used to create and retrieve data from the database very quickly. Index can be created by using
single or group of columns in a table. When index is created, it is assigned a ROWID for each row before it sorts
out the data.

Proper indexes are good for performance in large databases, but you need to be careful while creating index.
Selection of fields depends on what you are using in your SQL queries.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)
) i
Now, you can create index on single or multiple columns using the following syntax:

CREATE INDEX index name

ON table name (columnl, column2.....) 8

To create an INDEX on AGE column, to optimize the search on customers for a particular age, following is the SQL
syntax:

CREATE INDEX idx age

ON CUSTOMERS (AGE);

DROP an INDEX Constraint:

To drop an INDEX constraint, use the following SQL:

ALTER TABLE CUSTOMERS

DROP INDEX idx age;

Data Integrity:
The following categories of the data integrity exist with each RDBMS:

. Entity Integrity : There are no duplicate rows in a table.

TUTORIALS POINT
Simply Easy Learning

o Domain Integrity : Enforces valid entries for a given column by restricting the type, the format, or the
range of values.
. Referential Integrity : Rows cannot be deleted which are used by other records.

° User-Defined Integrity : Enforces some specific business rules that do not fall into entity, domain, or
referential integrity.

Database Normalization

Database normalization is the process of efficiently organizing data in a database. There are two reasons of the
normalization process:

. Eliminating redundant data, for example, storing the same data in more than one table.

. Ensuring data dependencies make sense.

Both of these are worthy goals as they reduce the amount of space a database consumes and ensure that data is
logically stored. Normalization consists of a series of guidelines that help guide you in creating a good database
structure.

Normalization guidelines are divided into normal forms; think of form as the format or the way a database structure
is laid out. The aim of normal forms is to organize the database structure so that it complies with the rules of first
normal form, then second normal form, and finally third normal form.

It's your choice to take it further and go to fourth normal form, fifth normal form, and so on, but generally speaking,
third normal form is enough.

o First Normal Form (1NF)
o Second Normal Form (2NF)
. Third Normal Form (3NF)

First Normal Form

First normal form (1NF) sets the very basic rules for an organized database:

. Define the data items required, because they become the columns in a table. Place related data items in a
table.

o Ensure that there are no repeating groups of data.

. Ensure that there is a primary key.

First Rule of 1NF:

You must define the data items. This means looking at the data to be stored, organizing the data into columns,
defining what type of data each column contains, and finally putting related columns into their own table.

For example, you put all the columns relating to locations of meetings in the Location table, those relating to
members in the MemberDetails table, and so on.

Second Rule of 1NF:

The next step is ensuring that there are no repeating groups of data. Consider we have the following table:

TUTORIALS POINT
Simply Easy Learning

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25),
ORDERS VARCHAR (155)

);

So if we populate this table for a single customer having multiple orders, then it would be something as follows:

ID NAME AGE ADDRESS

100 Sachin 36 Lower West Side
100 Sachin 36 Lower West Side
100 Sachin 36 Lower West Side

ORDERS
Cannon XL-200
Battery XL-200

Tripod Large

But as per 1NF, we need to ensure that there are no repeating groups of data. So let us break above table into two

parts and join them using a key as follows:

CUSTOMERS table:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25),
PRIMARY KEY (ID)

);

This table would have the following record:

ID NAME AGE
100 Sachin 36
ORDERS table:

CREATE TABLE ORDERS (
ID INT NOT NULL,
CUSTOMER_ID INT NOT NULL,

ORDERS VARCHAR (155),

ADDRESS

Lower West Side

TUTORIALS POINT
Simply Easy Learning

PRIMARY KEY (ID)

);

This table would have the following records:

ID CUSTOMER_ID ORDERS

10 100 Cannon XL-200
11 100 Battery XL-200
12 100 Tripod Large

Third Rule of 1NF:

The final rule of the first normal form, create a primary key for each table which we have already created.

Second Normal Form

Second normal form states that it should meet all the rules for 1NF and there must be no partial dependences of
any of the columns on the primary key:

Consider a customer-order relation and you want to store customer ID, customer name, order ID and order detalil,
and date of purchase:

CREATE TABLE CUSTOMERS (

CUST ID INT NOT NULL,
CUST NAME VARCHAR (20) NOT NULL,
ORDER ID INT NOT NULL,

ORDER DETAIL VARCHAR (20) NOT NULL,
SALE_DATE DATETIME,
PRIMARY KEY (CUST ID, ORDER ID)
);
This table is in first normal form, in that it obeys all the rules of first normal form. In this table, the primary key

consists of CUST_ID and ORDER_ID. Combined, they are unique assuming same customer would hardly order
same thing.

However, the table is not in second normal form because there are partial dependencies of primary keys and
columns. CUST_NAME is dependent on CUST_ID, and there's no real link between a customer's name and what
he purchased. Order detail and purchase date are also dependent on ORDER_ID, but they are not dependent on
CUST_ID, because there's no link between a CUST_ID and an ORDER_DETAIL or their SALE_DATE.

To make this table comply with second normal form, you need to separate the columns into three tables.

First, create a table to store the customer details as follows:

TUTORIALS POINT
Simply Easy Learning

CREATE TABLE CUSTOMERS (
CUST 1D INT NOT NULL,
CUST NAME VARCHAR (20) NOT NULL,
PRIMARY KEY (CUST_1ID)

);
Next, create a table to store details of each order:

CREATE TABLE ORDERS (
ORDER ID INT NOT NULL,
ORDER DETAIL VARCHAR (20) NOT NULL,
PRIMARY KEY (ORDER ID)

)

Finally, create a third table storing just CUST_ID and ORDER_ID to keep track of all the orders for a customer:
CREATE TABLE CUSTMERORDERS (
CUST_ID INT NOT NULL,
ORDER_ID INT NOT NULL,
SALE_DATE DATETIME,
PRIMARY KEY (CUST ID, ORDER ID)

);

Third Normal Form

A table is in third normal form when the following conditions are met:
. Itis in second normal form.
. All nonprimary fields are dependent on the primary key.

The dependency of nonprimary fields is between the data. For example, in the below table, street name, city, and
state are unbreakably bound to the zip code.

CREATE TABLE CUSTOMERS (

CUST_ID INT NOT NULL,
CUST NAME VARCHAR (20) NOT NULL,
DOB DATE,
STREET VARCHAR (200) ,

TUTORIALS POINT

Simply Easy Learning

CITY VARCHAR (100) ,

STATE VARCHAR (100) ,
ZIP VARCHAR (12),
EMATIL ID VARCHAR (256) ,

PRIMARY KEY (CUST_1ID)

)i

The dependency between zip code and address is called a transitive dependency. To comply with third normal
form, all you need to do is move the Street, City, and State fields into their own table, which you can call the Zip
Code table:

CREATE TABLE ADDRESS (

ZIP VARCHAR (12) ,

STREET VARCHAR (200) ,
CITY VARCHAR (100) ,
STATE VARCHAR (100) ,

PRIMARY KEY (ZIP)

)

Next, alter the CUSTOMERS table as follows:

CREATE TABLE CUSTOMERS (

CUST_ 1D INT NOT NULL,
CUST NAME VARCHAR (20) NOT NULL,
DOB DATE,

ZIP VARCHAR (12),

EMAIL ID VARCHAR (256) ,

PRIMARY KEY (CUST_1ID)

);

The advantages of removing transitive dependencies are mainly twofold. First, the amount of data duplication is
reduced and therefore your database becomes smaller.

The second advantage is data integrity. When duplicated data changes, there's a big risk of updating only some of
the data, especially if it's spread out in a number of different places in the database. For example, if address and
zip code data were stored in three or four different tables, then any changes in zip codes would need to ripple out
to every record in those three or four tables.

TUTORIALS POINT
Simply Easy Learning

SQL RDBMS Databases

here are many popular RDBMS available to work with. This tutorial gives a brief overview of few most

popular RDBMS. This would help you to compare their basic features.

MySQL

MySQL is an open source SQL database, which is developed by Swedish company MySQL AB. MySQL is
pronounced "my ess-que-ell," in contrast with SQL, pronounced "sequel."

MySQL is supporting many different platforms including Microsoft Windows, the major Linux distributions, UNIX,
and Mac OS X.

MySQL has free and paid versions, depending on its usage (non-commercial/commercial) and features. MySQL
comes with a very fast, multi-threaded, multi-user, and robust SQL database server.

History:

e Development of MySQL by Michael Widenius & David Axmark beginning in 1994.
e Firstinternal release on 23 May 1995.

e Windows version was released on 8 January 1998 for Windows 95 and NT.

e Version 3.23: beta from June 2000, production release January 2001.

e Version 4.0: beta from August 2002, production release March 2003 (unions).

e Version 4.01: beta from August 2003, Jyoti adopts MySQL for database tracking.
e Version 4.1: beta from June 2004, production release October 2004.

e Version 5.0: beta from March 2005, production release October 2005.

e Sun Microsystems acquired MySQL AB on 26 February 2008.

e Version 5.1: production release 27 November 2008.

TUTORIALS POINT
Simply Easy Learning

Features:

e High Performance.

e High Availability.

e Scalability and Flexibility Run anything.

e Robust Transactional Support.

e Web and Data Warehouse Strengths.

e Strong Data Protection.

e Comprehensive Application Development.
e Management Ease.

e Open Source Freedom and 24 x 7 Support.

e Lowest Total Cost of Ownership.

MS SQL Server

MS SQL Server is a Relational Database Management System developed by Microsoft Inc. lts primary query
languages are:

e T-SQL.
e ANSI SQL.
History:

e 1987 - Sybase releases SQL Server for UNIX.

e 1988 - Microsoft, Sybase, and Aston-Tate port SQL Server to OS/2.

e 1989 - Microsoft, Sybase, and Aston-Tate release SQL Server 1.0 for OS/2.
e 1990 - SQL Server 1.1 is released with support for Windows 3.0 clients.

e Aston-Tate drops out of SQL Server development.

e 2000 - Microsoft releases SQL Server 2000.

e 2001 - Microsoft releases XML for SQL Server Web Release 1 (download).
e 2002 - Microsoft releases SQLXML 2.0 (renamed from XML for SQL Server).

e 2002 - Microsoft releases SQLXML 3.0.

TUTORIALS POINT
Simply Easy Learning

e 2005 - Microsoft releases SQL Server 2005 on November 7th, 2005.

Features:

e High Performance.

e High Availability.

e Database mirroring.
e Database snapshots.
e CLR integration.

e Service Broker.

e DDL triggers.

e Ranking functions.

e Row version-based isolation levels.
e XML integration.

e TRY..CATCH.

e Database Mail.

ORACLE

It is a very large and multi-user database management system. Oracle is a relational database management
system developed by 'Oracle Corporation'.

Oracle works to efficiently manage its resource, a database of information, among the multiple clients requesting
and sending data in the network.

It is an excellent database server choice for client/server computing. Oracle supports all major operating systems
for both clients and servers, including MSDOS, NetWare, UnixWare, OS/2 and most UNIX flavors.

History:
Oracle began in 1977 and celebrating its 32 wonderful years in the industry (from 1977 to 2009).

e 1977 - Larry Ellison, Bob Miner and Ed Oates founded Software Development Laboratories to undertake
development work.

e 1979 - Version 2.0 of Oracle was released and it became first commercial relational database and first SQL
database. The company changed its name to Relational Software Inc. (RSI).

e 1981 - RSl started developing tools for Oracle.

e 1982 - RSl was renamed to Oracle Corporation.

TUTORIALS POINT
Simply Easy Learning

e 1983 - Oracle released version 3.0, rewritten in C language and ran on multiple platforms.

e 1984 - Oracle version 4.0 was released. It contained features like concurrency control - multi-version read
consistency, etc.

e 1985 - Oracle version 4.0 was released. It contained features like concurrency control - multi-version read
consistency, etc.

e 2007 - Oracle has released Oracle11g. The new version focused on better partitioning, easy migration, etc.

Features:

e Concurrency

e Read Consistency

e Locking Mechanisms
e Quiesce Database

e Portability

e Self-managing database
e SQL*Plus

e ASM

e Scheduler

e Resource Manager
e Data Warehousing

e Materialized views

e Bitmap indexes

e Table compression

e Parallel Execution

e Analytic SQL

e Data mining

e Partitioning

TUTORIALS POINT
Simply Easy Learning

MS ACCESS

This is one of the most popular Microsoft products. Microsoft Access is an entry-level database management
software. MS Access database is not only an inexpensive but also powerful database for small-scale projects.

MS Access uses the Jet database engine, which utilizes a specific SQL language dialect (sometimes referred to
as Jet SQL).

MS Access comes with the professional edition of MS Office package. MS Access has easy-to-use intuitive
graphical interface.

e 1992 - Access version 1.0 was released.

e 1993 - Access 1.1 released to improve compatibility with inclusion of the Access Basic programming
language.

e The most significant transition was from Access 97 to Access 2000.

e 2007 - Access 2007, a new database format was introduced ACCDB which supports complex data types
such as multi valued and attachment fields.

Features:
e Users can create tables, queries, forms and reports and connect them together with macros.

e The import and export of data to many formats including Excel, Outlook, ASCII, dBase, Paradox, FoxPro,
SQL Server, Oracle, ODBC, etc.

e There is also the Jet Database format (MDB or ACCDB in Access 2007), which can contain the application
and data in one file. This makes it very convenient to distribute the entire application to another user, who
can run it in disconnected environments.

e Microsoft Access offers parameterized queries. These queries and Access tables can be referenced from
other programs like VB6 and .NET through DAO or ADO.

e The desktop editions of Microsoft SQL Server can be used with Access as an alternative to the Jet Database
Engine.

e Microsoft Access is a file server-based database. Unlike client-server relational database management
systems (RDBMS), Microsoft Access does not implement database triggers, stored procedures, or
transaction logging.

TUTORIALS POINT
Simply Easy Learning

SQL Syntax

QL is followed by unique set of rules and guidelines called Syntax. This tutorial gives you a quick start with

SQL by listing all the basic SQL Syntax:

All the SQL statements start with any of the keywords like SELECT, INSERT, UPDATE, DELETE, ALTER, DROP,
CREATE, USE, SHOW and all the statements end with a semicolon (;).

Important point to be noted is that SQL is case insensitive, which means SELECT and select have same meaning
in SQL statements, but MySQL makes difference in table names. So if you are working with MySQL, then you
need to give table names as they exist in the database.

SQL SELECT Statement:

SELECT columnl, columnZ2....columnN
FROM table name;

SQL DISTINCT Clause:

SELECT DISTINCT columnl, column2....columnN
FROM table name;

SQL WHERE Clause:

SELECT columnl, columnZ2....columnN
FROM table name
WHERE CONDITION;

SQL AND/OR Clause:

SELECT columnl, column2....columnN
FROM table name
WHERE CONDITION-1 {AND|OR} CONDITION-2;

TUTORIALS POINT
Simply Easy Learning

SQL IN Clause:

SELECT columnl, column2....columnN
FROM table name
WHERE column_name IN (val-1, val-2,...val-N);

SQL BETWEEN Clause:

SELECT columnl, column2....columnN
FROM table name
WHERE column name BETWEEN val-1 AND val-2;

SQL LIKE Clause:

SELECT columnl, column2....columnN
FROM table name
WHERE column name LIKE { PATTERN };

SQL ORDER BY Clause:

SELECT columnl, column2....columnN
FROM table name

WHERE CONDITION

ORDER BY column name {ASC|DESC};

SQL GROUP BY Clause:

SELECT SUM (column_ name)
FROM table name
WHERE CONDITION

GROUP BY column name;

SQL COUNT Clause:

SELECT COUNT (column name)
FROM table name
WHERE CONDITION;

SQL HAVING Clause:

SELECT SUM (column name)

FROM table name

WHERE CONDITION

GROUP BY column name

HAVING (arithematic function condition) ;

SQL CREATE TABLE Statement:

CREATE TABLE table name (

TUTORIALS POINT
Simply Easy Learning

columnl datatype,

column2 datatype,

column3 datatype,

columnN datatype,

PRIMARY KEY (one or more columns)
) ;

SQL DROP TABLE Statement:

DROP TABLE table name;

SQL CREATE INDEX Statement:

CREATE UNIQUE INDEX indexiname
ON table name (columnl, columnZ,...columnN) ;

SQL DROP INDEX Statement:

ALTER TABLE table name
DROP INDEX index name;

SQL DESC Statement:

DESC table name;

SQL TRUNCATE TABLE Statement:

TRUNCATE TABLE table name;

SQL ALTER TABLE Statement:

ALTER TABLE table name {ADD|DROP|MODIFY} column name {data_ ype};

SQL ALTER TABLE Statement (Rename):

ALTER TABLE table name RENAME TO new table name;

SQL INSERT INTO Statement:

INSERT INTO table name(columnl, column?2. .. .columnN)
VALUES (valuel, value2....valueN);

SQL UPDATE Statement:

UPDATE table name

TUTORIALS POINT
Simply Easy Learning

SET columnl = valuel, column2 = value2....columnN=valueN
[WHERE CONDITION] ;

SQL DELETE Statement:

DELETE FROM table name
WHERE {CONDITION} ;

SQL CREATE DATABASE Statement:

CREATE DATABASE database name;

SQL DROP DATABASE Statement:

DROP DATABASE database name;

SQL USE Statement:

USE DATABASE database name;

SQL COMMIT Statement:

COMMIT;

SQL ROLLBACK Statement:

ROLLBACK;

TUTORIALS POINT
Simply Easy Learning

SQL Data Types

QL data type is an attribute that specifies type of data of any object. Each column, variable and expression

has related data type in SQL.

You would use these data types while creating your tables. You would choose a particular data type for a table

column based on your requirement.

SQL Server offers six categories of data types for your use:

Exact Numeric Data Types:

DATA TYPE FROM TO

Bigint -9,223,372,036,854,775,808 9,223,372,036,854,775,807

Int -2,147,483,648 2,147,483,647

Smallint -32,768 32,767

Tinyint 0 255

Bit 0 1

Decimal -10138 +1 10738 -1

Numeric -10738 +1 10738 -1

Money -922,337,203,685,477.5808 +922,337,203,685,477.5807

Smallmoney -214,748.3648 +214,748.3647
Approximate Numeric Data Types:

DATA TYPE FROM TO

Float -1.79E + 308 1.79E + 308

Real -3.40E + 38 3.40E + 38

TUTORIALS POINT

Simply Easy Learning

Date and Time Data Types:

DATA TYPE FROM TO

Datetime Jan 1, 1753 Dec 31, 9999
Smalldatetime Jan 1, 1900 Jun 6, 2079
Date Stores a date like June 30, 1991

Time Stores a time of day like 12:30 P.M.

Note: Here, datetime has 3.33 milliseconds accuracy where as smalldatetime has 1 minute accuracy.

Character Strings Data Types:

DATA TYPE FROM TO
Maximum length of 8,000 characters.(Fixed length non-Unicode
Cliets Ghar characters)
Varchar Varchar Maximum of 8,000 characters.(Variable-length non-Unicode data).
Maximum length of 231characters, Variable-length non-Unicode data
varchar(max) varchar(max) (SQL Server 2005 only).
Text text Variable-length non-Unicode data with a maximum length of
2,147,483,647 characters.

Unicode Character Strings Data Types:

DATA TYPE Description
Nchar Maximum length of 4,000 characters.(Fixed length Unicode)
Nvarchar Maximum length of 4,000 characters.(Variable length Unicode)

Maximum length of 231characters (SQL Server 2005 only).(Variable length

nvarchar(max) Unicode)

Ntext Maximum length of 1,073,741,823 characters. (Variable length Unicode)

Binary Data Types:

DATA TYPE Description

Binary Maximum length of 8,000 bytes(Fixed-length binary data)
Varbinary Maximum length of 8,000 bytes.(Variable length binary data)
TUTORIALS POINT

Simply Easy Learning

varbinary(max) Maximum length of 231 bytes (SQL Server 2005 only). (Variable length Binary

data)
Image Maximum length of 2,147,483,647 bytes. (Variable length Binary Data)
Misc Data Types:
DATA TYPE Description
. Stores values of various SQL Server-supported data types, except text, ntext, and
S el timestamp.
. Stores a database-wide unique number that gets updated every time a row gets
timestamp updated
uniqueidentifier Stores a globally unique identifier (GUID)
Stores XML data. You can store xml instances in a column or a variable (SQL Server
xml
2005 only).
cursor Reference to a cursor object
table Stores a result set for later processing
TUTORIALS POINT

Simply Easy Learning

SQL Operators

What is an Operator in SQL?

n operator is a reserved word or a character used primarily in an SQL statement's WHERE clause to

perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in an SQL statement and to serve as conjunctions for multiple conditions
in a statement.

. Arithmetic operators
. Comparison operators
. Logical operators

. Operators used to negate conditions

SQL Arithmetic Operators:

Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example
- . . a + b will
+ Addition - Adds values on either side of the operator give 30
- Subtraction - Subtracts right hand operand from left hand operand Zi\-/:-\qntl)l
* Multiplication - Multiplies values on either side of the operator 8 ol
p p P give 200
/ Division - Divides left hand operand by right hand operand gi\//: ;wll
% Modulus - Divides left hand operand by right hand operand and returns remainder gi;/;%wm
TUTORIALS POINT

Simply Easy Learning

Here are simple examples showing usage of SQL Arithmetic Operators:

SQL> select 10+ 20;

tomm - +
| 10+ 20 |
pommmm— o +
| 30 |
pomm o +

1 row in set (0.00 sec)

SQL> select 10 * 20;

pommmmm o +
| 10 * 20 |
e +
| 200 |
o +

1 row in set (0.00 sec)

SQL> select 10 / 5;

fommmmm o +
| 10 / 5 |
pomm o +
| 2.0000 |
fommmmm o +

1 row in set (0.03 sec)

SQL> select 12 $ 5;

pomm - +
[12 $§ 5 |
fomm - +
\ 2 |
oo +

1 row in set (0.00 sec)

SQL Comparison Operators:

Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example
= Checks if the values of two operands are equal or not, if yes then condition becomes true. Sé)t:trbu)els
= Checks if the values of two operands are equal or not, if values are not equal then (al=b)
- condition becomes true. is true.
- Checks if the values of two operands are equal or not, if values are not equal then (a<>b)
condition becomes true. is true.
S Checks if the value of left operand is greater than the value of right operand, if yes then (a>b)is
condition becomes true. not true.
< Checks if the value of left operand is less than the value of right operand, if yes then (a<b)is
condition becomes true. true.
.- Checks if the value of left operand is greater than or equal to the value of right operand, if |(: n>o=t b)
- yes then condition becomes true. t
rue.
TUTORIALS POINT

Simply Easy Learning

- Checks if the value of left operand is less than or equal to the value of right operand, if (a<=b)
B yes then condition becomes true. is true.
< Checks if the value of left operand is not less than the value of right operand, if yes then (al<b)
’ condition becomes true. is false.
> Checks if the value of left operand is not greater than the value of right operand, if yes (a!>b)
’ then condition becomes true. is true.

Consider the CUSTOMERS table having the following records:

SQL>

fom e +
| ID | NAME \
R et e +
| 1 | Ramesh |
| 2 | Khilan |
| 3 | kaushik

4	Chaitali
5	Hardik
6	Komal
7	Muffy
fom e +
7 rows in set (0.

SELECT * FROM CUSTOMERS;

Fomm e tom—————
| ADDRESS | SALARY
tomm - tom————
| Ahmedabad | 2000
| Delhi | 1500
| Kota | 2000
| Mumbai | 6500
| Bhopal | 8500
| MP | 4500
| Indore | 10000
Fomm - tom—
c)

Here are simple examples showing usage of SQL Comparison Operators:

SQL> SELECT * FROM CUSTOMERS WHERE SALARY > 5000;

SQL>

SQL>

Fomm tomm
| ADDRESS | SALARY
tomm tmmm
| Mumbai | 6500.00
| Bhopal | 8500.00
| Indore | 10000.00
Fomm tomm
@)

SELECT * FROM CUSTOMERS WHERE SALARY

_____ +___________+________
AGE | ADDRESS | SALARY

____+ ___________ + ________
32 | Ahmedabad | 2000.00
23 | Kota | 2000.00
_____ +___________+________

.00 sec)

SELECT * FROM CUSTOMERS WHERE SALARY

fomm fom
| ADDRESS | SALARY
Fomm fomm
| Delhi | 1500.00
| Mumbai | 6500.00
| Bhopal | 8500.00
| MP | 4500.00
| Indore | 10000.00
Fomm fom—
c)

= 2000;
-+
\
-+
\
\
-+
1= 2000;
-+
\
-+
\
\
\
\
\
-+

SQL> SELECT * FROM CUSTOMERS WHERE SALARY <> 2000;
pomm - to———— Fommm o R +

TUTORIALS PO

INT

Simply Easy Learning

| ID | NAME | AGE | ADDRESS | SALARY |
fom e +o——— Fomm tomm +
2	Khilan	25	Delhi	1500.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom e to———= Fomm tomm +
5 rows in set (0.00 sec)

fom e Fo——— fomm fom +
| ID | NAME | AGE | ADDRESS | SALARY |
o — +-——— o fom +
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
fom e Fo———= Fomm fomm +
3 rows in set (0.00 sec)

SQL Logical Operators:

Here is a list of all the logical operators available in SQL.

Operator
ALL

AND

ANY

BETWEEN

EXISTS

IN

LIKE

NOT

OR
IS NULL

UNIQUE

Description
The ALL operator is used to compare a value to all values in another value set.
The AND operator allows the existence of multiple conditions in an SQL statement's WHERE clause.

The ANY operator is used to compare a value to any applicable value in the list according to the
condition.

The BETWEEN operator is used to search for values that are within a set of values, given the
minimum value and the maximum value.

The EXISTS operator is used to search for the presence of a row in a specified table that meets
certain criteria.

The IN operator is used to compare a value to a list of literal values that have been specified.
The LIKE operator is used to compare a value to similar values using wildcard operators.

The NOT operator reverses the meaning of the logical operator with which it is used. Eg: NOT
EXISTS, NOT BETWEEN, NOT IN, etc. This is a negate operator.

The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause.
The NULL operator is used to compare a value with a NULL value.

The UNIQUE operator searches every row of a specified table for uniqueness (no duplicates).

Consider the CUSTOMERS table having the following records:

SQL> SELECT * FROM CUSTOMERS;

fom e fo———— fom e fom e +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e fo—— fom e fom - +
TUTORIALS POINT

Simply Easy Learning

| 1 | Ramesh | 32
| 2 | Khilan | 25
| 3 | kaushik | 23
| 4 | Chaitali | 25
| 5 | Hardik | 27
| 6 | Komal | 22
| 7 | Muffy | 24
fom e to———=
7 rows in set (0.00 se

Ahmedabad | 2000.00
Delhi | 1500.00
Kota | 2000.00
Mumba i | 6500.00
Bhopal | 8500.00
MP | 4500.00
Indore | 10000.00

Here are simple examples showing usage of SQL Comparison Operators:

SQL> SELECT * FROM CUSTOMERS WHERE AGE >=

e o fomm pommmm—— +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e — Fo——— Fomm tomm +
| 4 | Chaitali | 25 | Mumbai | 6500.00 |
| 5 | Hardik | 27 | Bhopal | 8500.00 |
et fomm fomm o pomm e +
2 rows in set (0.00 sec)

25 AND SALARY

>= 6500;

SQL> SELECT * FROM CUSTOMERS WHERE AGE >= 25 OR SALARY >= 6500;
o +o——— tomm - tomm +

| ID | NAME | AGE | ADDRESS | SALARY |
fom e — Fo——— Fom - Fom— +

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |
fom e — e Fomm Fomm +

5 rows in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE AGE IS NOT NULL;
fom e to——— Fomm - Fomm +

| ID | NAME | AGE | ADDRESS | SALARY |
R e +-——— tomm - tomm +

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |
fom e — e Fom Fomm +

7 rows in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE NAME LIKE 'Ko%';
fommmtm o o fommmmm - fommmmmm o +

| ID | NAME | AGE | ADDRESS | SALARY |

R it fo——— fomm fomm +

| 6 | Komal | 22 | MP | 4500.00 |

R i t————— tomm fomm +

1 row in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE AGE IN (25, 27);
e fo———— fomm fommmmm——— +

| ID | NAME | AGE | ADDRESS | SALARY |

et fo———— fomm pommmmm——— +
TUTORIALS POINT

Simply Easy Learning

2	Khilan	25	Delhi	1500.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
o +-———= o fomm +
3 rows in set (0.00 sec)

fom e to———= Fomm tomm +
| ID | NAME | AGE | ADDRESS | SALARY |
R et e P +o——— tomm tomm +
2	Khilan	25	Delhi	1500.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
o — +-——— o o +
3 rows in set (0.00 sec)

SQL> SELECT AGE FROM CUSTOMERS
WHERE EXISTS (SELECT AGE FROM CUSTOMERS WHERE SALARY > 6500) ;

\ \
\ \
\ \
| 25 |
\ \
\ \
\ \

7 rows in set (0.02 sec)

SQL> SELECT * FROM CUSTOMERS
WHERE AGE > ALL (SELECT AGE FROM CUSTOMERS WHERE SALARY > 6500) ;

e o= o o +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e +o———= fom e fomm +
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
fmm e ——— R fmm fomm——— +
1 row in set (0.02 sec)

SQL> SELECT * FROM CUSTOMERS
WHERE AGE > ANY (SELECT AGE FROM CUSTOMERS WHERE SALARY > 6500);

e et P +-——— tomm - o +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e — Fo——— Fom - fomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
fom e Fo——— Fomm - Fomm +
4 rows in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

SQL Expressions

n expression is a combination of one or more values, operators, and SQL functions that evaluate to a

value.

SQL EXPRESSIONS are like formulas and they are written in query language. You can also use them to query the
database for specific set of data.

Syntax:

Consider the basic syntax of the SELECT statement as follows:
SELECT columnl, column2, columnN

FROM table name

WHERE [CONDITION |EXPRESSION] ;

There are different types of SQL expressions, which are mentioned below:

SQL - Boolean Expressions:

SQL Boolean Expressions fetch the data on the basis of matching single value. Following is the syntax:
SELECT columnl, column2, columnN
FROM table name
WHERE SINGLE VALUE MATCHTING EXPRESSION;

Consider the CUSTOMERS table having the following records:

SQL> SELECT * FROM CUSTOMERS;

Rt it +————= fom - o +
| ID | NAME | AGE | ADDRESS | SALARY |
e R o R fomm - +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
e ettt +o———= o o +
TUTORIALS POINT

Simply Easy Learning

7 rows in set (0.00 sec)
Here is simple example showing usage of SQL Boolean Expressions:

SQL> SELECT * FROM CUSTOMERS WHERE SALARY = 10000;

-t Fo——— fom— Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
e fo——— fom fomm +
| 7 | Muffy | 24 | Indore | 10000.00
fom = fo——— fomm fomm - +
1 row in set (0.00 sec)

SQL - Numeric Expression:

This expression is used to perform any mathematical operation in any query. Following is the syntax:
SELECT numerical expression as OPERATION NAME
[FROM table name
WHERE CONDITION] ;

Here numerical_expression is used for mathematical expression or any formula. Following is a simple examples
showing usage of SQL Numeric Expressions:

SQL> SELECT (15 + 6) AS ADDITION

Fomm +
| ADDITION |
pomm e +
\ 21 |
pomm - +

1 row in set (0.00 sec)

There are several built-in functions like avg(), sum(), count(), etc., to perform what is known as aggregate data
calculations against a table or a specific table column.

SQL> SELECT COUNT (*) AS "RECORDS" FROM CUSTOMERS;

fomm o +
| RECORDS |
fomm o +
7
fomm - +

1 row in set (0.00 sec)

SQL - Date Expressions:

Date Expressions return current system date and time values:

SQL> SELECT CURRENT TIMESTAMP;

B et +
| Current Timestamp |
o +
| 2009-11-12 06:40:23 |
o +

1 row in set (0.00 sec)

Another date expression is as follows:

TUTORIALS POINT
Simply Easy Learning

SQL> SELECT GETDATE () ;;

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

SQL CREATE Database

he SQL CREATE DATABASE statement is used to create new SQL database.

Syntax:

Basic syntax of CREATE DATABASE statement is as follows:
CREATE DATABASE DatabaseName;

Always database name should be unique within the RDBMS.

Example:

If you want to create new database <testDB>, then CREATE DATABASE statement would be as follows:
SQL> CREATE DATABASE testDB;

Make sure you have admin privilege before creating any database. Once a database is created, you can check it in
the list of databases as follows:

SQL> SHOW DATABASES;
| Database

| information schema |
| AMROOD |
| TUTORIALSPOINT |
| mysqgl |
| orig |
| test |
| testDB |

7 rows in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

DROP or DELETE Database

he SQL DROP DATABASE statement is used to drop an existing database in SQL schema.

Syntax:

Basic syntax of DROP DATABASE statement is as follows:
DROP DATABASE DatabaseName;

Always database name should be unique within the RDBMS.

Example:

If you want to delete an existing database <testDB>, then DROP DATABASE statement would be as follows:
SQL> DROP DATABASE testDB;

NOTE: Be careful before using this operation because by deleting an existing database would result in loss of
complete information stored in the database.

Make sure you have admin privilege before dropping any database. Once a database is dropped, you can check it.

SQL> in the list of databases as follows:SHOW DATABASES;
| Database

| information schema |
| AMROOD |
| TUTORIALSPOINT |
| mysqgl |
| orig |
| test |

6 rows in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

SQL SELECT Database

hen you have multiple databases in your SQL Schema, then before starting your operation, you

would need to select a database where all the operations would be performed.

The SQL USE statement is used to select any existing database in SQL schema.

Syntax:

Basic syntax of USE statement is as follows:

USE DatabaseName;

Always database name should be unique within the RDBMS.

You can check available databases as follows:
SQL> SHOW DATABASES;
| Database
| information schema |
| AMROOD |
| TUTORIALSPOINT |
| mysqgl |
| orig |
\ |

test

6 rows in set (0.00 sec)

Now, if you want to work with AMROOD database, then you can execute the following SQL command and start
working with AMROOD database:

SQL> USE AMROOD;

TUTORIALS POINT
Simply Easy Learning

SQL CREATE Table

reating a basic table involves naming the table and defining its columns and each column's data type.

The SQL CREATE TABLE statement is used to create a new table.

Syntax:
Basic syntax of CREATE TABLE statement is as follows:

CREATE TABLE table name (

columnl datatype,

column?2 datatype,

column3 datatype,

columnN datatype,

PRIMARY KEY (one or more columns)
) i

CREATE TABLE is the keyword telling the database system what you want to do. In this case, you want to create
a new table. The unique name or identifier for the table follows the CREATE TABLE statement.

Then in brackets comes the list defining each column in the table and what sort of data type it is. The syntax
becomes clearer with an example below.

A copy of an existing table can be created using a combination of the CREATE TABLE statement and the SELECT
statement. You can check complete details at Create Table Using another Table.

Create Table Using another Table

A copy of an existing table can be created using a combination of the CREATE TABLE statement and the SELECT
statement.

The new table has the same column definitions. All columns or specific columns can be selected.

When you create a new table using existing table, new table would be populated using existing values in the old
table.

Syntax:

The basic syntax for creating a table from another table is as follows:

TUTORIALS POINT
Simply Easy Learning

CREATE TABLE NEW_ TABLE NAME AS
SELECT [columnl, column2...columnN]
FROM EXISTING TABLE NAME
[WHERE]

Here, column1, column2...are the fields of existing table and same would be used to create fields of new table.

Example:

Following is an example, which would create a table SALARY using CUSTOMERS table and having fields
customer ID and customer SALARY:

SQL> CREATE TABLE SALARY AS
SELECT ID, SALARY
FROM CUSTOMERS;

This would create new table SALARY, which would have the following records:

Example:

Following is an example, which creates a CUSTOMERS table with ID as primary key and NOT NULL are the
constraints showing that these fileds can not be NULL while creating records in this table:

SQL> CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

);

You can verify if your table has been created successfully by looking at the message displayed by the SQL server,
otherwise you can use DESC command as follows:

SQL> DESC CUSTOMERS;

R o ———— +o———— e fom o +
| Field | Type | Null | Key | Default | Extra |
fom— Fomm - +-———— +-——— fom— o +
ID	int (11)	NO	PRI	
NAME	varchar (20)	NO		
AGE	int (11)	NO		
ADDRESS	char(25)	YES		NULL
SALARY	decimal(18,2)	YES		NULL
+——— t——————————————— +—————- +————= t———————— +——————= +

TUTORIALS POINT
Simply Easy Learning

5 rows in set (0.00 sec)

Now, you have CUSTOMERS table available in your database which you can use to store required information
related to customers.

TUTORIALS POINT
Simply Easy Learning

SQL DROP or DELETE Table

he SQL DROP TABLE statement is used to remove a table definition and all data, indexes, triggers,

constraints, and permission specifications for that table.
NOTE: You have to be careful while using this command because once a table is deleted then all the information

available in the table would also be lost forever.

Syntax:

Basic syntax of DROP TABLE statement is as follows:

DROP TABLE table name;

Example:

Let us first verify CUSTOMERS table and then we would delete it from the database:

SQL> DESC CUSTOMERS;

e tomm +————— +-——— to——— o +
| Field | Type | Null | Key | Default | Extra |
fom— Fomm e t————— +————- fomm————— fo————— +
ID	int (11)	NO	PRI		
NAME	varchar (20)	NO			
AGE	int (11)	NO			
ADDRESS	char (25)	YES		NULL	
SALARY	decimal (18,2)	YES		NULL	

o Fomm - +-——— Fo——— o +

5 rows in set (0.00 sec)
This means CUSTOMERS table is available in the database, so let us drop it as follows:

SQL> DROP TABLE CUSTOMERS;
Query OK, 0 rows affected (0.01 sec)

Now, if you would try DESC command, then you would get error as follows:

SQL> DESC CUSTOMERS;
ERROR 1146 (42502): Table 'TEST.CUSTOMERS' doesn't exist

Here, TEST is database name which we are using for our examples.

TUTORIALS POINT
Simply Easy Learning

SQL INSERT Query

he SQL INSERT INTO Statement is used to add new rows of data to a table in the database.

Syntax:

There are two basic syntaxes of INSERT INTO statement as follows:

INSERT INTO TABLE NAME (columnl, column2, column3, ...columnN)]
VALUES (valuel, value2, value3,...valueN);

Here, column1, column2,...columnN are the names of the columns in the table into which you want to insert data.

You may not need to specify the column(s) name in the SQL query if you are adding values for all the columns of
the table. But make sure the order of the values is in the same order as the columns in the table. The SQL INSERT
INTO syntax would be as follows:

INSERT INTO TABLE NAME VALUES (valuel,value2,value3,...valueN);

Example:

Following statements would create six records in CUSTOMERS table:

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (4, 'Chaitali', 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (5, 'Hardik', 27, 'Bhopal', 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (6, 'Komal', 22, 'MP', 4500.00);

You can create a record in CUSTOMERS table using second syntax as follows:

TUTORIALS POINT
Simply Easy Learning

INSERT INTO CUSTOMERS
VALUES (7, 'Muffy', 24, 'Indore', 10000.00);

All the above statements would produce the following records in CUSTOMERS table:

o +o——— tomm - R et +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e e Fomm - Fom— +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
o +o——— tom - tomm +

Populate one table using another table:

You can populate data into a table through select statement over another table provided another table has a set of
fields, which are required to populate first table. Here is the syntax:

INSERT INTO first table name [(columnl, column2, ... columnN)]
SELECT columnl, column2, ...columnN
FROM second table name
[WHERE condition];

TUTORIALS POINT
Simply Easy Learning

SQL SELECT Query

QL SELECT Statement is used to fetch the data from a database table which returns data in the form of

result table. These result tables are called result-sets.

Syntax:

The basic syntax of SELECT statement is as follows:
SELECT columnl, column2, columnN FROM table name;

Here, column1i, column2...are the fields of a table whose values you want to fetch. If you want to fetch all the fields
available in the field, then you can use the following syntax:

SELECT * FROM table name;

Example:

Consider the CUSTOMERS table having the following records:
fom e Fo——— Fom - Fom +
| ID | NAME | AGE | ADDRESS | SALARY |
T +———— fomm - fommm - A
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal [22	MP	4500.00	
7	Muffy	24	Indore	10000.00
fom - +-——— Fom - Fo— +

Following is an example, which would fetch ID, Name and Salary fields of the customers available in
CUSTOMERS table:

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS;

This would produce the following result:

TUTORIALS POINT
Simply Easy Learning

et fomm e +
1	Ramesh	2000.00
2	Khilan	1500.00
3	kaushik	2000.00
4	Chaitali	6500.00
5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00
o o +

If you want to fetch all the fields of CUSTOMERS table, then use the following query:
SQL> SELECT * FROM CUSTOMERS;

This would produce the following result:

fom e to——— Fomm - R et +
| ID | NAME | AGE | ADDRESS | SALARY |
R et e +o——— tom - R ettt +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00

| 6 | Komal | 22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
fom e to——— Fomm e B ettt +
TUTORIALS POINT

Simply Easy Learning

SQL WHERE Clause

he SQL WHERE clause is used to specify a condition while fetching the data from single table or joining

with multiple tables.

If the given condition is satisfied, then only it returns specific value from the table. You would use WHERE clause
to filter the records and fetching only necessary records.

The WHERE clause is not only used in SELECT statement, but it is also used in UPDATE, DELETE statement,
etc., which we would examine in subsequent chapters.

Syntax:
The basic syntax of SELECT statement with WHERE clause is as follows:

SELECT columnl, column2, columnN
FROM table name
WHERE [condition]

You can specify a condition using comparison or logical operators like >, <, =, LIKE, NOT etc. Below examples
would make this concept clear.

Example:
Consider the CUSTOMERS table having the following records:

i ittt o= fom - fom e +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e +o———= o o +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom e to———= fom - fom +

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table where salary
is greater than 2000:

TUTORIALS POINT
Simply Easy Learning

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY > 2000;

This would produce the following result:

i fommmmm— o +

ID | NAME | SALARY |
et R fommmmm o +
4	Chaitali	6500.00
5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00
et fommmmm— - +

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table for a
customer with name Hardik. Here, it is important to note that all the strings should be given inside single quotes (")
where as numeric values should be given without any quote as in above example:

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE NAME = 'Hardik';

This would produce the following result:

et fommm - +
ID | NAME | SALARY |
e R +
5 | Hardik | 8500.00 |
fomm - fomm - +

TUTORIALS POINT
Simply Easy Learning

SQL AND and OR Operators

he SQL AND and OR operators are used to combine multiple conditions to narrow data in an SQL

statement. These two operators are called conjunctive operators.

These operators provide a means to make multiple comparisons with different operators in the same SQL
statement.

The AND Operator:

The AND operator allows the existence of multiple conditions in an SQL statement's WHERE clause.
Syntax:
The basic syntax of AND operator with WHERE clause is as follows:

SELECT columnl, column2, columnN

FROM table name

WHERE [conditionl] AND [condition2]...AND [conditionN];

You can combine N number of conditions using AND operator. For an action to be taken by the SQL statement,
whether it be a transaction or query, all conditions separated by the AND must be TRUE.

Example:

Consider the CUSTOMERS table having the following records:
e +———— fom - fommm - +
| ID | NAME | AGE | ADDRESS | SALARY |
e T +———— fom fom - +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom - +-———= Fo— - Fo—m——————— +

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table where salary
is greater than 2000 AND age is less tan 25 years:

TUTORIALS POINT
Simply Easy Learning

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY > 2000 AND age < 25;

This would produce the following result:

et ST fommmmm o +
ID | NAME | SALARY
et T pommmmm o +
| 6 | Komal | 4500.00 |
7 | Muffy | 10000.00
Fomm it —— fommm +

The OR Operator:

The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause.
Syntax:
The basic syntax of OR operator with WHERE clause is as follows:

SELECT columnl, column2, columnN

FROM table name

WHERE [conditionl] OR [condition2]...0OR [conditionN]

You can combine N number of conditions using OR operator. For an action to be taken by the SQL statement,
whether it be a transaction or query, only any ONE of the conditions separated by the OR must be TRUE.

Example:

Consider the CUSTOMERS table having the following records:
fom - +———- fomm - fom - A
| ID | NAME | AGE | ADDRESS | SALARY |
R +———— R et S 1
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom - +————- fomm - R A

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table where salary
is greater than 2000 OR age is less tan 25 years:

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY > 2000 OR age < 25;

This would produce the following result:

2000.00 |
6500.00 |

kaushik

TUTORIALS POINT
Simply Easy Learning

5 | Hardik | 8500.00 |

\

| 6 | Komal | 4500.00 |
| 7 | Muffy | 10000.00 |
oo fommmmmm - +
TUTORIALS POINT

Simply Easy Learning

SQL UPDATE Query

he SQL UPDATE Query is used to modify the existing records in a table.

You can use WHERE clause with UPDATE query to update selected rows, otherwise all the rows would be
affected.

Syntax:

The basic syntax of UPDATE query with WHERE clause is as follows:
UPDATE table name
SET columnl = valuel, column2 = value2...., columnN = valueN

WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example:

Consider the CUSTOMERS table having the following records:
fom - F———— Fo— - Fomm - +
| ID | NAME | AGE | ADDRESS | SALARY |
e +———— fomm - fommm - +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom - +-——— Fom - Fomm +

Following is an example, which would update ADDRESS for a customer whose ID is 6:
SQL> UPDATE CUSTOMERS

SET ADDRESS = 'Pune'
WHERE ID = 6;

Now, CUSTOMERS table would have the following records:

TUTORIALS POINT
Simply Easy Learning

fom e — e Fomm Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e — Fo——— Fom - Fomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00

| 6 | Komal | 22 | Pune | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
fom e — e Fomm fomm +

If you want to modify all ADDRESS and SALARY column values in CUSTOMERS table, you do not need to use
WHERE clause and UPDATE query would be as follows:

SQL> UPDATE CUSTOMERS
SET ADDRESS = 'Pune', SALARY = 1000.00;

Now, CUSTOMERS table would have the following records:

fom - to——— Fomm o +
| ID | NAME | AGE | ADDRESS | SALARY |
et o fomm - tommmmm o +
1	Ramesh	32	Pune	1000.00
2	Khilan	25	Pune	1000.00
3	kaushik	23	Pune	1000.00
4	Chaitali	25	Pune	1000.00
5	Hardik	27	Pune	1000.00
6	Komal	22	Pune	1000.00
7	Muffy	24	Pune	1000.00
fom - +o——— tomm o +
TUTORIALS POINT

Simply Easy Learning

SQL DELETE Query

he SQL DELETE Query is used to delete the existing records from a table.

You can use WHERE clause with DELETE query to delete selected rows, otherwise all the records would be
deleted.

Syntax:

The basic syntax of DELETE query with WHERE clause is as follows:

DELETE FROM table name
WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example:

Consider the CUSTOMERS table having the following records:
f——— b ————————— +————— f——————————— o —————— +
| ID | NAME | AGE | ADDRESS | SALARY |
e e e +———— fom fomm - +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
f——— = ———————— +————— f——————————— f—————————— +

Following is an example, which would DELETE a customer, whose ID is 6:

SQL> DELETE FROM CUSTOMERS
WHERE ID = 6;

Now, CUSTOMERS table would have the following records:

ot fo——— fomm fomm +
| ID | NAME | AGE | ADDRESS | SALARY |

TUTORIALS POINT
Simply Easy Learning

fom e — e Fomm Fomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
fom e — B Fom fomm +

If you want to DELETE all the records from CUSTOMERS table, you do not need to use WHERE clause and
DELETE query would be as follows:

SQL> DELETE FROM CUSTOMERS;

Now, CUSTOMERS table would not have any record.

TUTORIALS POINT
Simply Easy Learning

SQL LIKE Clause

he SQL LIKE clause is used to compare a value to similar values using wildcard operators. There are two

wildcards used in conjunction with the LIKE operator:
. The percent sign (%)
. The underscore (_)

The percent sign represents zero, one, or multiple characters. The underscore represents a single number or
character. The symbols can be used in combinations.

Syntax:

The basic syntax of % and _ is as follows:

SELECT FROM table name
WHERE column LIKE 'XXXX$'

or

SELECT FROM table name
WHERE column LIKE 'S$XXXX%'

or

SELECT FROM table name
WHERE column LIKE 'XXXX '

or

SELECT FROM table name
WHERE column LIKE '7XXXX'

or

SELECT FROM table name
WHERE column LIKE '7XXXX7'

You can combine N number of conditions using AND or OR operators. Here, XXXX could be any numeric or string
value.

TUTORIALS POINT
Simply Easy Learning

Example:

Here are number of examples showing WHERE part having different LIKE clause with '%' and '_' operators:
Statement Description
WHERE SALARY LIKE '200%' Finds any values that start with 200

WHERE SALARY LIKE

9,200%' Finds any values that have 200 in any position

WHERE SALARY LIKE ' 00%' Finds any values that have 00 in the second and third positions

}QH_!EF},E, SRR BN Finds any values that start with 2 and are at least 3 characters in length
WHERE SALARY LIKE '%2' Finds any values that end with 2
WHERE SALARY LIKE '_2%3' Finds any values that have a 2 in the second position and end with a 3

WHERE SALARY LIKE '2___3' Finds any values in a five-digit number that start with 2 and end with 3

Let us take a real example, consider the CUSTOMERS table having the following records:

fom e Fo——— Fomm - Fomm +
ID | NAME | AGE | ADDRESS | SALARY

fom e — B fomm e fomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00

| 6 | Komal [22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
o +o——— tom - tomm +

Following is an example, which would display all the records from CUSTOMERS table where SALARY starts with
200:

SQL> SELECT * FROM CUSTOMERS
WHERE SALARY LIKE '200%';

This would produce the following result:

fom e — e Fom Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e Fo——— Fomm - Fomm +
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
| 3 | kaushik | 23 | Kota | 2000.00 |
fmm e +o——— tmmm e R +
TUTORIALS POINT

Simply Easy Learning

SQL TOP Clause

he SQL TOP clause is used to fetch a TOP N number or X percent records from a table.

Note: All the databases do not support TOP clause. For example MySQL supports LIMIT clause to fetch limited
number of records and Oracle uses ROWNUM to fetch limited number of records.

Syntax:

The basic syntax of TOP clause with SELECT statement would be as follows:

SELECT TOP number |percent column name (s)
FROM table name
WHERE [condition]

Example:
Consider the CUSTOMERS table having the following records:
fom - +-——— Fom - Fom +
ID | NAME | AGE | ADDRESS | SALARY |
fom e +———— fomm - fomm - +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
et fo———— fommmmmm o R +

Following is an example on SQL server, which would fetch top 3 records from CUSTOMERS table:
SQL> SELECT TOP 3 * FROM CUSTOMERS;

This would produce the following result:

fmm e —— tm——— o ————— o +
| ID | NAME | AGE | ADDRESS | SALARY |
i +o———= o e et +
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
TUTORIALS POINT

Simply Easy Learning

| 2 | Khilan | 25 | Delhi | 1500.00 |
3 kaushik | 23 | Kota | 2000.00
If you are using MySQL server, then here is an equivalent example:

SQL> SELECT * FROM CUSTOMERS
LIMIT 3;

This would produce the following result:

fom to———— tomm - tomm +
| ID | NAME | AGE | ADDRESS | SALARY |
R to——— e tomm +
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
| 2 | Khilan | 25 | Delhi | 1500.00

| 3 | kaushik | 23 | Kota | 2000.00 |
B e to——— e tomm +

If you are using Oracle server, then here is an equivalent example:

SQL> SELECT * FROM CUSTOMERS
WHERE ROWNUM <= 3;

This would produce the following result:

ot o fom fom +

| ID | NAME | AGE | ADDRESS | SALARY |

ittt ST R e fomm - +

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
2 | Khilan | 25 | Delhi | 1500.00

| 3 | kaushik | 23 | Kota | 2000.00 |

et o e fom e +

TUTORIALS POINT
Simply Easy Learning

SQL ORDER BY Clause

he SQL ORDER BY clause is used to sort the data in ascending or descending order, based on one or

more columns. Some database sorts query results in ascending order by default.

Syntax:

The basic syntax of ORDER BY clause is as follows:

SELECT column-list

FROM table name

[WHERE condition]

[ORDER BY columnl, column2, .. columnN] [ASC | DESC];

You can use more than one column in the ORDER BY clause. Make sure whatever column you are using to sort,
that column should be in column-list.

Example:

Consider the CUSTOMERS table having the following records:
fom e fo———— e fom e +
| ID | NAME | AGE | ADDRESS | SALARY |
R et e e fo————= fom e fom e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal [22	MP	4500.00	
7	Muffy	24	Indore	10000.00
fom e fom R fom e +

Following is an example, which would sort the result in ascending order by NAME and SALARY:

SQL> SELECT * FROM CUSTOMERS
ORDER BY NAME, SALARY;

This would produce the following result:

ot fo——— fomm fomm +

TUTORIALS POINT
Simply Easy Learning

| ID | NAME | AGE | ADDRESS | SALARY |
fom e +o——— Fomm - B et +
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
3	kaushik	23	Kota	2000.00
2	Khilan	25	Delhi	1500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
1	Ramesh	32	Ahmedabad	2000.00
fom e Fo——— Fomm - Fomm +

Following is an example, which would sort the result in descending order by NAME:

SQL> SELECT * FROM CUSTOMERS
ORDER BY NAME DESC;

This would produce the following result:

fom e B fom - fom +
| ID | NAME | AGE | ADDRESS | SALARY |
e e fm———— o B +
1	Ramesh	32	Ahmedabad	2000.00
7	Muffy	24	Indore	10000.00
6	Komal	22	MP	4500.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
5	Hardik	27	Bhopal	8500.00
4	Chaitali	25	Mumbai	6500.00
fom e B fom - fomm +
TUTORIALS POINT

Simply Easy Learning

SQL Group By

he SQL GROUP BY clause is used in collaboration with the SELECT statement to arrange identical data

into groups.
The GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the ORDER BY clause.

Syntax:

The basic syntax of GROUP BY clause is given below. The GROUP BY clause must follow the conditions in the
WHERE clause and must precede the ORDER BY clause if one is used.

SELECT columnl, column2
FROM table name

WHERE [conditions]
GROUP BY columnl, column?2
ORDER BY columnl, column?2

Example:

Consider the CUSTOMERS table having the following records:
fo—m +-———- o e 3
| ID | NAME | AGE | ADDRESS | SALARY |
fom - o= fomm - fomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Rt e +-———- fomm - fomm - 3

If you want to know the total amount of salary on each customer, then GROUP BY query would be as follows:

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS
GROUP BY NAME;

This would produce the following result:

TUTORIALS POINT
Simply Easy Learning

pomm fomm +
| NAME | SUM (SALARY) |
fmmm——————— fmm +
Chaitali	6500.00
Hardik	8500.00
kaushik	2000.00
Khilan	1500.00
Komal	4500.00
Muffy	10000.00
Ramesh	2000.00
fomm e oo +

fmm +o——— tomm - R et +
| ID | NAME | AGE | ADDRESS | SALARY |
e et e +-——— tomm tomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Ramesh	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	kaushik	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom e — e Fomm fomm +

Now again, if you want to know the total amount of salary on each customer, then GROUP BY query would be as
follows:

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS
GROUP BY NAME;

This would produce the following result:

fmm Fmm e +
| NAME | SUM (SALARY) |
fom fmm e +
Hardik	8500.00
kaushik	8500.00
Komal	4500.00
Muffy	10000.00
Ramesh	3500.00
e o +
TUTORIALS POINT

Simply Easy Learning

SQL Distinct Keyword

he SQL DISTINCT keyword is used in conjunction with SELECT statement to eliminate all the duplicate

records and fetching only unique records.

There may be a situation when you have multiple duplicate records in a table. While fetching such records, it
makes more sense to fetch only unique records instead of fetching duplicate records.

Syntax:

The basic syntax of DISTINCT keyword to eliminate duplicate records is as follows:

SELECT DISTINCT columnl, column2,..... columnN
FROM table name
WHERE [condition]

Example:

Consider the CUSTOMERS table having the following records:
fom - +-——— Fo—— e +
| ID | NAME | AGE | ADDRESS | SALARY |
f———f—————————— +————— f——————————— t—————————— i
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom - +-——— Fo— B +

First, let us see how the following SELECT query returns duplicate salary records:

SQL> SELECT SALARY FROM CUSTOMERS
ORDER BY SALARY;

This would produce the following result where salary 2000 is coming twice which is a duplicate record from the
original table.

TUTORIALS POINT
Simply Easy Learning

Now, let us use DISTINCT keyword with the above SELECT query and see the result:

SQL> SELECT DISTINCT SALARY FROM CUSTOMERS
ORDER BY SALARY;

This would produce the following result where we do not have any duplicate entry:

pomm - +
| SALARY |
fomm - +
| 1500.00 |
| 2000.00 |
| 4500.00 |
| 6500.00 |
| 8500.00 |
| 10000.00 |
fomm - +
TUTORIALS POINT

Simply Easy Learning

SQL SORTING Results

he SQL ORDER BY clause is used to sort the data in ascending or descending order, based on one or

more columns. Some databases sort query results in ascending order by default.

Syntax:

The basic syntax of ORDER BY clause which would be used to sort result in ascending or descending order is as
follows:

SELECT column-list

FROM table name

[WHERE condition]

[ORDER BY columnl, column2, .. columnN] [ASC | DESC];

You can use more than one column in the ORDER BY clause. Make sure whatever column you are using to sort,
that column should be in column-list.

Example:

Consider the CUSTOMERS table having the following records:
fom - +-——— Fo— - Fom +
| ID | NAME | AGE | ADDRESS | SALARY |
fom - +-——— fo— e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom - +-——— Fo— - Fo—mm—————— +

Following is an example, which would sort the result in ascending order by NAME and SALARY:

SQL> SELECT * FROM CUSTOMERS
ORDER BY NAME, SALARY;

This would produce the following result:

TUTORIALS POINT
Simply Easy Learning

fom e — e Fomm Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e — Fo——— Fom - Fomm +
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
3	kaushik	23	Kota	2000.00
2	Khilan	25	Delhi	1500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
1	Ramesh	32	Ahmedabad	2000.00
fom e — e Fomm fomm +

Following is an example, which would sort the result in descending order by NAME:

SQL> SELECT * FROM CUSTOMERS
ORDER BY NAME DESC;

This would produce the following result:

fom e Fo———= Fomm - e it +
| ID | NAME | AGE | ADDRESS | SALARY |
R et e +o——— tomm - tomm +
1	Ramesh	32	Ahmedabad	2000.00
7	Muffy	24	Indore	10000.00
6	Komal	22	MP	4500.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
5	Hardik	27	Bhopal	8500.00

| 4 | Chaitali | 25 | Mumbai | 6500.00 |
fom e Fo——— Fomm - Fomm - +

To fetch the rows with own preferred order, the SELECT query would be as follows:

SQL> SELECT * FROM CUSTOMERS
ORDER BY (CASE ADDRESS

WHEN 'DELHI' THEN 1
WHEN 'BHOPAL' THEN 2
WHEN 'KOTA' THEN 3

WHEN 'AHMADABAD' THEN 4

WHEN 'MP' THEN 5

ELSE 100 END) ASC, ADDRESS DESC;

This would produce the following result:

R et e +-——— tomm - R et +
ID | NAME | AGE | ADDRESS | SALARY |
fom e Fo——— fom - Fomm +
| 2 | Khilan | 25 | Delhi | 1500.00 |
| 5 | Hardik | 27 | Bhopal | 8500.00
| 3 | kaushik | 23 | Kota | 2000.00 |
| 6 | Komal | 22 | MP | 4500.00 |
| 4 | Chaitali | 25 | Mumbai | 6500.00
| 7 | Muffy | 24 | Indore | 10000.00 |
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
fom e — Fo——— Fmm = Fomm +

This will sort customers by ADDRESS in your ownoOrder of preference first and in a natural order for the
remaining addresses. Also remaining Addresses will be sorted in the reverse alpha order.

TUTORIALS POINT
Simply Easy Learning

SQL Constraints

onstraints are the rules enforced on data columns on table. These are used to limit the type of data that

can go into a table. This ensures the accuracy and reliability of the data in the database.

Contraints could be column level or table level. Column level constraints are applied only to one column where as
table level constraints are applied to the whole table.

Following are commonly used constraints available in SQL. These constraints have already been discussed
in SQL - RDBMS Concepts chapter but its worth to revise them at this point.

Following are commonly used constraints available in SQL:

NOT NULL Constraint: Ensures that a column cannot have NULL value.

DEFAULT Constraint: Provides a default value for a column when none is specified.

UNIQUE Constraint: Ensures that all values in a column are different.

PRIMARY Key: Uniquely identified each rows/records in a database table.

FOREIGN Key: Uniquely identified a row/record in any other database table.

CHECK Constraint: The CHECK constraint ensures that all values in a column satisfy certain conditions.
INDEX: Use to create and retrieve data from the database very quickly.

NOT NULL Constraint:

By default, a column can hold NULL values. If you do not want a column to have a NULL value, then you need to
define such constraint on this column specifying that NULL is now not allowed for that column.

A NULL is not the same as no data, rather, it represents unknown data.
Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns, three of which,
ID and NAME and AGE, specify not to accept NULLs:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,
TUTORIALS POINT

Simply Easy Learning

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

);

If CUSTOMERS table has already been created, then to add a NOT NULL constraint to SALARY column in Oracle
and MySQL, you would write a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18, 2) NOT NULL;

DEFAULT Constraint:

The DEFAULT constraint provides a default value to a column when the INSERT INTO statement does not provide
a specific value.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, SALARY
column is set to 5000.00 by default, so in case INSERT INTO statement does not provide a value for this column,
then by default this column would be set to 5000.00.

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2) DEFAULT 5000.00,

PRIMARY KEY (ID)

)

If CUSTOMERS table has already been created, then to add a DFAULT constraint to SALARY column, you would
write a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18, 2) DEFAULT 5000.00;

Drop Default Constraint:
To drop a DEFAULT constraint, use the following SQL:

ALTER TABLE CUSTOMERS

ALTER COLUMN SALARY DROP DEFAULT;

TUTORIALS POINT
Simply Easy Learning

UNIQUE Constraint:

The UNIQUE Constraint prevents two records from having identical values in a particular column. In the
CUSTOMERS table, for example, you might want to prevent two or more people from having identical age.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, AGE
column is set to UNIQUE, so that you can not have two records with same age:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL UNIQUE,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

)

If CUSTOMERS table has already been created, then to add a UNIQUE constraint to AGE column, you would write
a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY AGE INT NOT NULL UNIQUE;

You can also use the following syntax, which supports naming the constraint in multiple columns as well:

ALTER TABLE CUSTOMERS

ADD CONSTRAINT myUniqueConstraint UNIQUE (AGE, SALARY) ;

DROP a UNIQUE Constraint:

To drop a UNIQUE constraint, use the following SQL:

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myUniqueConstraint;

If you are using MySQL, then you can use the following syntax:

ALTER TABLE CUSTOMERS

DROP INDEX myUniqueConstraint;

TUTORIALS POINT
Simply Easy Learning

PRIMARY Key:

A primary key is a field in a table which uniquely identifies each row/record in a database table. Primary keys must
contain unique values. A primary key column cannot have NULL values.

A table can have only one primary key, which may consist of single or multiple fields. When multiple fields are used
as a primary key, they are called a composite key.

If a table has a primary key defined on any field(s), then you can not have two records having the same value of
that field(s).

Note: You would use these concepts while creating database tables.

Create Primary Key:

Here is the syntax to define ID attribute as a primary key in a CUSTOMERS table.

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

)

To create a PRIMARY KEY constraint on the "ID" column when CUSTOMERS table already exists, use the
following SQL syntax:

ALTER TABLE CUSTOMER ADD PRIMARY KEY (ID);

NOTE: If you use the ALTER TABLE statement to add a primary key, the primary key column(s) must already have
been declared to not contain NULL values (when the table was first created).

For defining a PRIMARY KEY constraint on multiple columns, use the following SQL syntax:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID, NAME)

TUTORIALS POINT
Simply Easy Learning

To create a PRIMARY KEY constraint on the "ID" and "NAMES" columns when CUSTOMERS table already exists,
use the following SQL syntax:

ALTER TABLE CUSTOMERS

ADD CONSTRAINT PK CUSTID PRIMARY KEY (ID, NAME);

Delete Primary Key:

You can clear the primary key constraints from the table, Use Syntax:

ALTER TABLE CUSTOMERS DROP PRIMARY KEY ;

FOREIGN Key:

A foreign key is a key used to link two tables together. This is sometimes called a referencing key.

Primary key field from one table and insert it into the other table where it becomes a foreign key i.e., Foreign Key is
a column or a combination of columns, whose values match a Primary Key in a different table.

The relationship between 2 tables matches the Primary Key in one of the tables with a Foreign Key in the
second table.

If a table has a primary key defined on any field(s), then you can not have two records having the same value of
that field(s).

Example:
Consider the structure of the two tables as follows:

CUSTOMERS table:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

)

ORDERS table:

CREATE TABLE ORDERS (
ID INT NOT NULL,
DATE DATETIME,

CUSTOMER ID INT references CUSTOMERS (ID),

TUTORIALS POINT
Simply Easy Learning

AMOUNT double,
PRIMARY KEY (ID)

)i

If ORDERS table has already been created, and the foreign key has not yet been, use the syntax for specifying a
foreign key by altering a table.

ALTER TABLE ORDERS

ADD FOREIGN KEY (Customer ID) REFERENCES CUSTOMERS (ID) ;

DROP a FOREIGN KEY Constraint:

To drop a FOREIGN KEY constraint, use the following SQL:

ALTER TABLE ORDERS

DROP FOREIGN KEY;

CHECK Constraint:

The CHECK Constraint enables a condition to check the value being entered into a record. If the condition
evaluates to false, the record violates the constraint and isn’t entered into the table.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, we add a
CHECK with AGE column, so that you can not have any CUSTOMER below 18 years:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL CHECK (AGE >= 18),

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

);

If CUSTOMERS table has already been created, then to add a CHECK constraint to AGE column, you would write
a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY AGE INT NOT NULL CHECK (AGE >= 18);

You can also use following syntax, which supports naming the constraint and multiple columns as well:

ALTER TABLE CUSTOMERS

TUTORIALS POINT
Simply Easy Learning

ADD CONSTRAINT myCheckConstraint CHECK (AGE >= 18);

DROP a CHECK Constraint:

To drop a CHECK constraint, use the following SQL. This syntax does not work with MySQL.:

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myCheckConstraint;

INDEX:

The INDEX is used to create and retrieve data from the database very quickly. Index can be created by using
single or group of columns in a table. When index is created, it is assigned a ROWID for each row before it sorts
out the data.

Proper indexes are good for performance in large databases, but you need to be careful while creating index.
Selection of fields depends on what you are using in your SQL queries.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns:

CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)
) 7
Now, you can create index on single or multiple columns using the followwng syntax:
CREATE INDEX index name

ON table name (columnl, column2.....) 8

To create an INDEX on AGE column, to optimize the search on customers for a particular age, following is the SQL
syntax:

CREATE INDEX idx age

ON CUSTOMERS (AGE);

DROP an INDEX Constraint:

To drop an INDEX constraint, use the following SQL:

TUTORIALS POINT
Simply Easy Learning

ALTER TABLE CUSTOMERS

DROP INDEX idx age;

Constraints can be specified when a table is created with the CREATE TABLE statement or you can use ALTER
TABLE statment to create constraints even after the table is created.

Dropping Constraints:

Any constraint that you have defined can be dropped using the ALTER TABLE command with the DROP
CONSTRAINT option.

For example, to drop the primary key constraint in the EMPLOYEES table, you can use the following command:
ALTER TABLE EMPLOYEES DROP CONSTRAINT EMPLOYEES PK;

Some implementations may provide shortcuts for dropping certain constraints. For example, to drop the primary
key constraint for a table in Oracle, you can use the following command:

ALTER TABLE EMPLOYEES DROP PRIMARY KEY;

Some implementations allow you to disable constraints. Instead of permanently dropping a constraint from the
database, you may want to temporarily disable the constraint, and then enable it later.

Integrity Constraints:

Integrity constraints are used to ensure accuracy and consistency of data in a relational database. Data integrity is
handled in a relational database through the concept of referential integrity.

There are many types of integrity constraints that play a role in referential integrity (RI). These constraints include
Primary Key, Foreign Key, Unique Constraints and other constraints mentioned above.

TUTORIALS POINT
Simply Easy Learning

SQL Joins

he SQL Joins clause is used to combine records from two or more tables in a database. A JOIN is a

means for combining fields from two tables by using values common to each.
Consider the following two tables, (a) CUSTOMERS table is as follows:

e e T f———— fom e Fom e +

| ID | NAME | AGE | ADDRESS | SALARY |
e e e fo———= B it fom e +

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan |25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |
fom e fo———= e fom e +
(b) Another table is ORDERS as follows:

o e et e e fom e R +
|OID | DATE | CUSTOMER ID | AMOUNT |
femmee T —,—,—,—— T — e +
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2 1560	
103	2008-05-20 00:00:00	4	2060
o= o fom e e +

Now, let us join these two tables in our SELECT statement as follows:
SQL> SELECT ID, NAME, AGE, AMOUNT

FROM CUSTOMERS, ORDERS

WHERE CUSTOMERS.ID = ORDERS.CUSTOMER ID;

This would produce the following result:

fom e fom——— o +
| ID | NAME | AGE | AMOUNT |
fmm e f———— fmm—————— +
3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560
TUTORIALS POINT

Simply Easy Learning

| 4 | Chaitali | 25 | 2060 |

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can be used to join tables,
such as =, <, >, <, <=, >=, |=, BETWEEN, LIKE, and NOT; they can all be used to join tables. However, the most
common operator is the equal symbol.

SQL Join Types:

There are different types of joins available in SQL:

INNER JOIN: returns rows when there is a match in both tables.

LEFT JOIN: returns all rows from the left table, even if there are no matches in the right table.

RIGHT JOIN: returns all rows from the right table, even if there are no matches in the left table.

FULL JOIN: returns rows when there is a match in one of the tables.

SELF JOIN: is used to join a table to itself as if the table were two tables, temporarily renaming at least one
table in the SQL statement.

. CARTESIAN JOIN: returns the Cartesian product of the sets of records from the two or more joined tables.

INNER JOIN

The most frequently used and important of the joins is the INNER JOIN. They are also referred to as an
EQUIJOIN.

The INNER JOIN creates a new result table by combining column values of two tables (table1 and table2) based
upon the join-predicate. The query compares each row of table1 with each row of table2 to find all pairs of rows
which satisfy the join-predicate. When the join-predicate is satisfied, column values for each matched pair of rows
of A and B are combined into a result row.

Syntax:
The basic syntax of INNER JOIN is as follows:

SELECT tablel.columnl, table2.column2...

FROM tablel

INNER JOIN table2

ON tablel.common filed = table2.common field;

Example:
Consider the following two tables, (a) CUSTOMERS table is as follows:

fom e Fo——— Fomm - Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fmm +o——— tomm - R et +

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal |22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |
fom e — Fo———= Fom - Fomm +
(b) Another table is ORDERS as follows:

e o Fomm e fomm +

TUTORIALS POINT
Simply Easy Learning

| OID | DATE | ID | AMOUNT |
f=m=== i femmmmmmme==== e +
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
+-——— o Fom— o +			
Now, let us join these two tables using INNER JOIN as follows:			
SQL> SELECT ID, NAME, AMOUNT, DATE			
FROM CUSTOMERS			
INNER JOIN ORDERS			
ON CUSTOMERS.ID = ORDERS.CUSTOMER ID;			
This would produce the following result:			
o ———— to————— o +			
ID	NAME	AMOUNT	DATE
fom - Fo—————— R e L T +			
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
2	Khilan	1560	2009-11-20 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
o to—— o +

LEFT JOIN

The SQL LEFT JOIN returns all rows from the left table, even if there are no matches in the right table. This means
that if the ON clause matches 0 (zero) records in right table, the join will still return a row in the result, but with
NULL in each column from right table.

This means that a left join returns all the values from the left table, plus matched values from the right table or
NULL in case of no matching join predicate.

Syntax:
The basic syntax of LEFT JOIN is as follows:

SELECT tablel.columnl, table2.column2...

FROM tablel

LEFT JOIN table2

ON tablel.common filed = table2.common field;

Here given condition could be any given expression based on your requirement.

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:
R +———— fom - fom—m - A
| ID | NAME | AGE | ADDRESS | SALARY |
o ——— +-——— tomm———— tom—————— +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
TUTORIALS POINT

Simply Easy Learning

Fo———— o fomm o fommmm— +
| OID | DATE | CUSTOMER ID | AMOUNT |
to—mm o fom o fommmmm +
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3 1500	
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
e o fommm e fommmm— o +

Now, let us join these two tables using LEFT JOIN as follows:

SQL> SELECT 1ID, NAME, AMOUNT, DATE
FROM CUSTOMERS
LEFT JOIN ORDERS
ON CUSTOMERS.ID = ORDERS.CUSTOMER ID;

This would produce the following result:

fom e Fomm o +
| ID | NAME | AMOUNT | DATE

fom Fomm o +
| 1 | Ramesh | NULL | NULL

| 2 | Khilan | 1560 | 2009-11-20 00:00:00

| 3 | kaushik | 3000 | 2009-10-08 00:00:00

| 3 | kaushik | 1500 | 2009-10-08 00:00:00

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00

| 5 | Hardik | NULL | NULL

| 6 | Komal | NULL | NULL

| 7 | Muffy | NULL | NULL

o tom————— o +

RIGHT JOIN

The SQL RIGHT JOIN returns all rows from the right table, even if there are no matches in the left table. This
means that if the ON clause matches 0 (zero) records in left table, the join will still return a row in the result, but
with NULL in each column from left table.

This means that a right join returns all the values from the right table, plus matched values from the left table or
NULL in case of no matching join predicate.

Syntax:
The basic syntax of RIGHT JOIN is as follows:

SELECT tablel.columnl, table2.column2...

FROM tablel

RIGHT JOIN table2

ON tablel.common filed = table2.common field;

Example:
Consider the following two tables, (a) CUSTOMERS table is as follows:

TUTORIALS POINT
Simply Easy Learning

—————————— +
SALARY |

Ahmedabad
Delhi
Kota
Mumbai
Bhopal

MP

Ramesh
Khilan
kaushik
Chaitali
Hardik
Komal

+

I

I

I

I
+———— — — — + — +

I

I

I

I

I

I

I

|

I

I
+———— — — — 4+ — +

I

I

I

I

I
+———— — — — + — +

I

I

I

I

I

I

I

I

I

I

I
+———— — — — + — +

I

I

I

I

I

I

I

I

I

I

4

et Fom fommmm oo fomm - +
|OID | DATE | CUSTOMER ID | AMOUNT |
e oo Fommmm - fomm - +
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2 1560	
103	2008-05-20 00:00:00	4	2060
et Fom fomm oo fomm - +

Now, let us join these two tables using RIGHT JOIN as follows:

SQL> SELECT 1ID, NAME, AMOUNT, DATE
FROM CUSTOMERS
RIGHT JOIN ORDERS
ON CUSTOMERS.ID = ORDERS.CUSTOMER ID;

This would produce the following result:

o fom o R et +
| ID | NAME | AMOUNT | DATE

et pommmmm o pommmmm o o +
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
2	Khilan	1560	2009-11-20 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
Fommm— e Fommmm— e +

FULLJOIN

The SQL FULL JOIN combines the results of both left and right outer joins.
The joined table will contain all records from both tables, and fill in NULLs for missing matches on either side.

Syntax:
The basic syntax of FULL JOIN is as follows:

SELECT tablel.columnl, table2.column2...

FROM tablel

FULL JOIN table2

ON tablel.common filed = table2.common field;

Here given condition could be any given expression based on your requirement.

TUTORIALS POINT
Simply Easy Learning

Example:
Consider the following two tables, (a) CUSTOMERS table is as follows:

fom - +-——— Fo—mm - R +
| ID | NAME | AGE | ADDRESS | SALARY |
S e EE L LT +———- fom e fom—m - A
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal [22	MP	4500.00	
7	Muffy	24	Indore	10000.00
fom - +-——— Fo—m - R +				
(b) Another table is ORDERS as follows:				
to———— e fommmmmm—m— fommmm——— +				
OID	DATE	CUSTOMER ID	AMOUNT	
oo oo oo e +				
102	2009-10-08 00:00:00	3	3000	
100	2009-10-08 00:00:00	3	1500	
101	2009-11-20 00:00:00	2 1560		
103	2008-05-20 00:00:00	4	2060	
to———— fomm fommmmmm——— fommmm— - +				
Now, let us join these two tables using FULL JOIN as follows:				
SQL> SELECT 1ID, NAME, AMOUNT, DATE				
FROM CUSTOMERS				
FULL JOIN ORDERS				
ON CUSTOMERS.ID = ORDERS.CUSTOMER ID;				
This would produce the following result:				
f——————f—————————— +———————— fo———————————————————— +				
ID NAME	AMOUNT	DATE \		
fommm - fo——m———— o +				
1 Ramesh	NULL	NULL		
2 Khilan	1560	2009-11-20 00:00:00		
3 kaushik	3000	2009-10-08 00:00:00		
3 kaushik	1500	2009-10-08 00:00:00		
4 Chaitali	2060	2008-05-20 00:00:00		
\ 5	Hardik \ NULL	NULL \		
\ 6	Komal \ NULL	NULL \		
\ 7	Muffy \ NULL	NULL \		
3 kaushik	3000	2009-10-08 00:00:00		
3 kaushik	1500	2009-10-08 00:00:00		
2 Khilan	1560	2009-11-20 00:00:00		
4 Chaitali	2060	2008-05-20 00:00:00		
fom e Fomm——— - o +

If your Database does not support FULL JOIN like MySQL does not support FULL JOIN, then you can use UNION

ALL clause to combine two JOINS as follows:

SQL> SELECT

FROM CUSTOMERS
LEFT JOIN ORDERS

ID, NAME, AMOUNT,

DATE

TUTORIALS POINT
Simply Easy Learning

ON CUSTOMERS.ID = ORDERS.CUSTOMER ID
UNION ALL

SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER ID

SELF JOIN

The SQL SELF JOIN is used to join a table to itself as if the table were two tables, temporarily renaming at least
one table in the SQL statement.

Syntax:
The basic syntax of SELF JOIN is as follows:

SELECT a.column name, b.column name...
FROM tablel a, tablel b
WHERE a.common filed = b.common field;

Here, WHERE clause could be any given expression based on your requirement.

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:
Fom - Fo——— Fom - Fo—m - +
| ID | NAME | AGE | ADDRESS | SALARY |
T +———— fomm - fom—m - A
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
f—— = ———————— +————— f——————————— f—————————— +

Now, let us join this table using SELF JOIN as follows:

SQL> SELECT a.ID, b.NAME, a.SALARY
FROM CUSTOMERS a, CUSTOMERS b
WHERE a.SALARY < b.SALARY;

This would produce the following result:

et fomm - +
| ID | NAME | SALARY |
fomm - fomm - +
2	Ramesh [1500.00	
2	kaushik	1500.00
1	Chaitali	2000.00
2	Chaitali	1500.00
3	Chaitali	2000.00
6	Chaitali	4500.00
1	Hardik	2000.00
2	Hardik	1500.00
3	Hardik	2000.00
4	Hardik	6500.00
TUTORIALS POINT

Simply Easy Learning

6	Hardik	4500.00
1	Komal	2000.00
2	Komal	1500.00
3	Komal	2000.00
1	Muffy	2000.00
2	Muffy	1500.00
3	Muffy	2000.00
4	Muffy	6500.00
5	Muffy	8500.00
6	Muffy	4500.00
e e e +

CARTESIAN JOIN

The CARTESIAN JOIN or CROSS JOIN returns the cartesian product of the sets of records from the two or more
joined tables. Thus, it equates to an inner join where the join-condition always evaluates to True or where the join-
condition is absent from the statement.

Syntax:
The basic syntax of INNER JOIN is as follows:

SELECT tablel.columnl, table2.column2...
FROM tablel, table2 [, table3]

Example:
Consider the following two tables, (a) CUSTOMERS table is as follows:

o +-——— o R ettt +
| ID | NAME | AGE | ADDRESS | SALARY |
s T o= fmm fom - +

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |
e T o= fom - fomm - +
(b) Another table is ORDERS as follows:

o fmm fmm e fom +
|OID | DATE | CUSTOMER ID | AMOUNT
e - T — e +
102	2009-10-08 00:00:00	3 3000	
100	2009-10-08 00:00:00	3 1500	
101	2009-11-20 00:00:00	2 1560	
103	2008-05-20 00:00:00	4	2060
o= fom fomm e fomm - +

Now, let us join these two tables using INNER JOIN as follows:

SQL> SELECT 1ID, NAME, AMOUNT, DATE
FROM CUSTOMERS, ORDERS;

TUTORIALS POINT
Simply Easy Learning

This would produce the following result:

et fommm o +
| ID | NAME | AMOUNT | DATE |
fom e fomm o +
1	Ramesh	3000	2009-10-08 00:00:00
1	Ramesh	1500	2009-10-08 00:00:00
1	Ramesh	1560	2009-11-20 00:00:00
1	Ramesh	2060	2008-05-20 00:00:00
2	Khilan	3000	2009-10-08 00:00:00
2	Khilan	1500	2009-10-08 00:00:00
2	Khilan	1560	2009-11-20 00:00:00
2	Khilan	2060	2008-05-20 00:00:00
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
3	kaushik	1560	2009-11-20 00:00:00
3	kaushik	2060	2008-05-20 00:00:00
4	Chaitali	3000	2009-10-08 00:00:00
4	Chaitali	1500	2009-10-08 00:00:00
4	Chaitali	1560	2009-11-20 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	3000	2009-10-08 00:00:00
5	Hardik	1500	2009-10-08 00:00:00
5	Hardik	1560	2009-11-20 00:00:00
5	Hardik	2060	2008-05-20 00:00:00
6	Komal	3000	2009-10-08 00:00:00
6	Komal	1500	2009-10-08 00:00:00
6	Komal	1560	2009-11-20 00:00:00
6	Komal	2060	2008-05-20 00:00:00
7	Muffy	3000	2009-10-08 00:00:00
7	Muffy	1500	2009-10-08 00:00:00
7	Muffy	1560	2009-11-20 00:00:00
7	Muffy	2060	2008-05-20 00:00:00
fomm o fommm oo +
TUTORIALS POINT

Simply Easy Learning

SQL Unions Clause

he SQL UNION clause/operator is used to combine the results of two or more SELECT statements

without returning any duplicate rows.

To use UNION, each SELECT must have the same number of columns selected, the same number of column
expressions, the same data type, and have them in the same order, but they do not have to be the same length.

Syntax:

The basic syntax of UNION is as follows:

SELECT columnl [, column2]
FROM tablel [, table2]
[WHERE condition]

UNION
SELECT columnl [, column2]

FROM tablel [, table2]
[WHERE condition]

Here given condition could be any given expression based on your requirement.

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:
T +———— fomm - fomm - A
| ID | NAME | AGE | ADDRESS | SALARY |
et fo—— fomm fomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom - +-——— Fo—m e +

(b) Another table is ORDERS as follows:

TUTORIALS POINT
Simply Easy Learning

e e e T +
|OID | DATE | CUSTOMER ID | AMOUNT |
oo oo e oo e +
102	2009-10-08 00:00:00	3 3000	
100	2009-10-08 00:00:00	3 1500	
101	2009-11-20 00:00:00	2 1560	
103	2008-05-20 00:00:00	4	2060
e e e T +

Now, let us join these two tables in our SELECT statement as follows:

SQL> SELECT 1ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER ID
UNION

SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER ID;

This would produce the following result:

fo—mm—— fommmmmm— fommm—— - o +
| ID | NAME | AMOUNT | DATE
fom——— fom fomm o +
| 1 | Ramesh | NULL | NULL
2	Khilan	1560	2009-11-20 00:00:00
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL
7	Muffy	NULL	NULL
to—mm—— fommmmmm——— fommm———— e +

The UNION ALL Clause:

The UNION ALL operator is used to combine the results of two SELECT statements including duplicate rows.

The same rules that apply to UNION apply to the UNION ALL operator.

Syntax:
The basic syntax of UNION ALL is as follows:

SELECT columnl [, column2]
FROM tablel [, table2]
[WHERE condition]

UNION ALL
SELECT columnl [, column2]

FROM tablel [, table2]
[WHERE condition]

Here given condition could be any given expression based on your requirement.

TUTORIALS POINT
Simply Easy Learning

Example:
Consider the following two tables, (a) CUSTOMERS table is as follows:

fom e o= fmm - fomm - +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e o= fom - fomm - +

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |
fom e o= fom - fomm - +
(b) Another table is ORDERS as follows:

o= o o fo—m - +
|OID | DATE | CUSTOMER ID | AMOUNT |
oo oo oo e +
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2 1560	
103	2008-05-20 00:00:00	4	2060
o= R it e fomm - fomm - +

Now, let us join these two tables in our SELECT statement as follows:
SQL> SELECT 1ID, NAME, AMOUNT, DATE
FROM CUSTOMERS
LEFT JOIN ORDERS
ON CUSTOMERS.ID
UNION ALL
SELECT ID, NAME, AMOUNT,
FROM CUSTOMERS
RIGHT JOIN ORDERS
ON CUSTOMERS.ID

ORDERS .CUSTOMER ID

DATE

ORDERS .CUSTOMER ID;

This would produce the following result:

et ST T Fommm e e +
| ID NAME | AMOUNT | DATE
o +-——————— B e +
| 1 Ramesh | NULL | NULL
2 Khilan	1560	2009-11-20 00:00:00
3 kaushik	3000	2009-10-08 00:00:00
3 kaushik	1500	2009-10-08 00:00:00
4 Chaitali	2060	2008-05-20 00:00:00
5 Hardik	NULL	NULL
6 Komal	NULL	NULL
7 Muffy	NULL	NULL
3 kaushik	3000	2009-10-08 00:00:00
3 kaushik	1500	2009-10-08 00:00:00
2 Khilan	1560	2009-11-20 00:00:00
4 Chaitali	2060	2008-05-20 00:00:00
e e +——————— B e +

There are two other clauses (i.e., operators), which are very similar to UNION clause:

TUTORIALS POINT
Simply Easy Learning

o SQL INTERSECT Clause: is used to combine two SELECT statements, but returns rows only from the first
SELECT statement that are identical to a row in the second SELECT statement.

° SQL EXCEPT Clause : combines two SELECT statements and returns rows from the first SELECT statement
that are not returned by the second SELECT statement.

INTERSECT Clause

The SQL INTERSECT clause/operator is used to combine two SELECT statements, but returns rows only from the
first SELECT statement that are identical to a row in the second SELECT statement. This means INTERSECT
returns only common rows returned by the two SELECT statements.

Just as with the UNION operator, the same rules apply when using the INTERSECT operator. MySQL does not
support INTERSECT operator

Syntax:

The basic syntax of INTERSECT is as follows:

SELECT columnl [, column2]
FROM tablel [, table2]
[WHERE condition]

INTERSECT
SELECT columnl [, column2]
FROM tablel [, table2]

[WHERE condition]

Here given condition could be any given expression based on your requirement.

Example:
Consider the following two tables, (a) CUSTOMERS table is as follows:
fom - F-——— Fo—m - Fo—m - +

| ID | NAME | AGE | ADDRESS | SALARY \
S e E E L Ly +———- fom - fom— - A

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |
e e it +———— R it S +

(b) Another table is ORDERS as follows:

+———— e e T e fom e +
|OID | DATE | CUSTOMER ID | AMOUNT |
T e e e e +
| 102 | 2009-10-08 00:00:00 | 3 3000 |
| 100 | 2009-10-08 00:00:00 | 3 1500 |
[101 | 2009-11-20 00:00:00 | 2 1560 |
[103 | 2008-05-20 00:00:00 | 4 | 2060 |
+———— e e T e fom e +

Now, let us join these two tables in our SELECT statement as follows:

TUTORIALS POINT
Simply Easy Learning

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER ID
INTERSECT

SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER ID;

This would produce the following result:

Fommm—— o Fommm o +
| ID | NAME | AMOUNT | DATE

fommm pommmmmm fommmmm o +
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
2	Ramesh	1560	2009-11-20 00:00:00
4	kaushik	2060	2008-05-20 00:00:00
Fommm——— o Fommm— o +

EXCEPT Clause

The SQL EXCEPT clause/operator is used to combine two SELECT statements and returns rows from the first
SELECT statement that are not returned by the second SELECT statement. This means EXCEPT returns only
rows, which are not available in second SELECT statement.

Just as with the UNION operator, the same rules apply when using the EXCEPT operator. MySQL does not
support EXCEPT operator.

Syntax:
The basic syntax of EXCEPT is as follows:

SELECT columnl [, column2]
FROM tablel [, table2]

[WHERE condition]
EXCEPT

SELECT columnl [, column2]
FROM tablel [, table2]

[WHERE condition]

Here given condition could be any given expression based on your requirement.

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:

TUTORIALS POINT
Simply Easy Learning

pom - to———— fommmm - fommmm - +

| ID | NAME | AGE | ADDRESS | SALARY |
fomm e fo—— - fomm - fomm - +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Fom e +———— fom - fomm - +

o et e T fommmm e o +
|OID | DATE | CUSTOMER ID | AMOUNT |
+o———— o fommmm e po—mm - +
102	2009-10-08 00:00:00	3 3000	
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
fom——— oo o pommm - +

Now, let us join these two tables in our SELECT statement as follows:

SQL> SELECT 1ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER ID
EXCEPT

SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER ID;

This would produce the following result:

TUTORIALS POINT
Simply Easy Learning

ID NAME | AMOUNT DATE
fommmtmm - fomm fom +
1 Ramesh | NULL NULL
| 5 | Hardik | NULL NULL
6 Komal | NULL NULL
| 7 | Muffy | NULL | NULL
tomm - fom— - e L L e L L +
TUTORIALS POINT

Simply Easy Learning

SQL NULL Values

he SQL NULL is the term used to represent a missing value. A NULL value in a table is a value in a field

that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand that a NULL value is different
than a zero value or a field that contains spaces.

Syntax:

The basic syntax of NULL while creating a table:

SQL> CREATE TABLE CUSTOMERS (

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

);

Here, NOT NULL signifies that column should always accept an explicit value of the given data type. There are
two columns where we did not use NOT NULL, which means these columns could be NULL.

A field with a NULL value is one that has been left blank during record creation.

Example:

The NULL value can cause problems when selecting data, however, because when comparing an unknown value
to any other value, the result is always unknown and not included in the final results.

You must use the IS NULL or IS NOT NULL operators in order to check for a NULL value.
Consider the following table, CUSTOMERS having the following records:

i ettt +o———= o o +
| ID | NAME | AGE | ADDRESS | SALARY |
fmm t———— e ——— o —————— +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
TUTORIALS POINT

Simply Easy Learning

| 5 | Hardik | 27 | Bhopal | 8500.00

| 6 | Komal | 22 | MP |

| 7 | Muffy | 24 | Indore |

fom e Fo———= Fomm - e et +

Now, following is the usage of IS NOT NULL operator:
SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY
FROM CUSTOMERS
WHERE SALARY IS NOT NULL;

This would produce the following result:

fmm to——— tomm - B +
| ID | NAME | AGE | ADDRESS | SALARY |
e et e T +o——— tom - tomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00

fom e — Fo———= Fom - Fomm +

Now, following is the usage of IS NULL operator:
SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY

FROM CUSTOMERS
WHERE SALARY IS NULL;

This would produce the following result:

fom e Fo———= Fomm e R +
| ID | NAME | AGE | ADDRESS | SALARY |
o +o——— Fom - tomm +
| 6 | Komal | 22 | MP |

| 7 | Muffy | 24 | Indore |

fom e Fo——— Fmm = fomm +
TUTORIALS POINT

Simply Easy Learning

SQL Alias Syntax

ou can rename a table or a column temporarily by giving another name known as alias.

The use of table aliases means to rename a table in a particular SQL statement. The renaming is a temporary
change and the actual table name does not change in the database.

The column aliases are used to rename a table's columns for the purpose of a particular SQL query.

Syntax:

The basic syntax of table alias is as follows:

SELECT columnl, column2....
FROM table name AS alias name
WHERE [condition];

The basic syntax of column alias is as follows:

SELECT column name AS alias name
FROM table name
WHERE [condition];

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:
T +———— fomm - fommm - A
| ID | NAME | AGE | ADDRESS | SALARY |
e o R fomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom - +-——— Fo— B +

(b) Another table is ORDERS as follows:

TUTORIALS POINT
Simply Easy Learning

2009-10-08 00:00:00
2009-10-08 00:00:00
2009-11-20 00:00:00
2008-05-20 00:00:00

Now, following is the usage of table alias:
SQL> SELECT C.ID, C.NAME, C.AGE, O.AMOUNT

FROM CUSTOMERS AS C, ORDERS AS O
WHERE C.ID = O.CUSTOMER ID;

This would produce the following result:

et fo———— fommm +
| ID | NAME | AGE | AMOUNT |
i R fo——— fomm +
3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560
4	Chaitali	25	2060
Fomm Fom—— fomm +

Following is the usage of column alias:
SQL> SELECT ID AS CUSTOMER ID, NAME AS CUSTOMER NAME

FROM CUSTOMERS
WHERE SALARY IS NOT NULL;

This would produce the following result:

fmm - o +
| CUSTOMER ID | CUSTOMER NAME |
e e ————e +
\ 1 | Ramesh |
| 2 | Khilan |
| 3 | kaushik |
| 4 | Chaitali

\ 5 | Hardik |
\ 6 | Komal

| 7 | Muffy |
fmm - o +

TUTORIALS POINT
Simply Easy Learning

SQL Indexes

ndexes are special lookup tables that the database search engine can use to speed up data retrieval. Simply

put, an index is a pointer to data in a table. An index in a database is very similar to an index in the back of a book.

For example, if you want to reference all pages in a book that discuss a certain topic, you first refer to the index,
which lists all topics alphabetically and are then referred to one or more specific page numbers.

An index helps speed up SELECT queries and WHERE clauses, but it slows down data input, with UPDATE and
INSERT statements. Indexes can be created or dropped with no effect on the data.

Creating an index involves the CREATE INDEX statement, which allows you to name the index, to specify the
table and which column or columns to index, and to indicate whether the index is in ascending or descending
order.

Indexes can also be unique, similar to the UNIQUE constraint, in that the index prevents duplicate entries in the
column or combination of columns on which there's an index.

The CREATE INDEX Command:

The basic syntax of CREATE INDEX is as follows:

CREATE INDEX index name ON table name;

Single-Column Indexes:

A single-column index is one that is created based on only one table column. The basic syntax is as follows:

CREATE INDEX index name
ON table name (column_name) ;

Unique Indexes:

Unique indexes are used not only for performance, but also for data integrity. A unique index does not allow any
duplicate values to be inserted into the table. The basic syntax is as follows:

CREATE INDEX index name
on table name (column name) ;

TUTORIALS POINT
Simply Easy Learning

Composite Indexes:

A composite index is an index on two or more columns of a table. The basic syntax is as follows:

CREATE INDEX index name
on table name (columnl, column2) ;

Whether to create a single-column index or a composite index, take into consideration the column(s) that you may
use very frequently in a query's WHERE clause as filter conditions.

Should there be only one column used, a single-column index should be the choice. Should there be two or more
columns that are frequently used in the WHERE clause as filters, the composite index would be the best choice.

Implicit Indexes:

Implicit indexes are indexes that are automatically created by the database server when an object is created.
Indexes are automatically created for primary key constraints and unique constraints.

The DROP INDEX Command:

An index can be dropped using SQL DROP command. Care should be taken when dropping an index because
performance may be slowed or improved.

The basic syntax is as follows:
DROP INDEX index name;

You can check INDEX Constraint chapter to see actual examples on Indexes.

When should indexes be avoided?

Although indexes are intended to enhance a database's performance, there are times when they should be
avoided. The following guidelines indicate when the use of an index should be reconsidered:

e Indexes should not be used on small tables.
e Tables that have frequent, large batch update or insert operations.
e Indexes should not be used on columns that contain a high number of NULL values.

e Columns that are frequently manipulated should not be indexed.

TUTORIALS POINT
Simply Easy Learning

SQL ALTER TABLE Command

he SQL ALTER TABLE command is used to add, delete or modify columns in an existing table.

You would also use ALTER TABLE command to add and drop various constraints on an existing table.

Syntax:

The basic syntax of ALTER TABLE to add a new column in an existing table is as follows:
ALTER TABLE table name ADD column name datatype;

The basic syntax of ALTER TABLE to DROP COLUMN in an existing table is as follows:
ALTER TABLE table name DROP COLUMN column name;

The basic syntax of ALTER TABLE to change the DATA TYPE of a column in a table is as follows:
ALTER TABLE table name MODIFY COLUMN column name datatype;

The basic syntax of ALTER TABLE to add a NOT NULL constraint to a column in a table is as follows:
ALTER TABLE table name MODIFY column name datatype NOT NULL;

The basic syntax of ALTER TABLE to ADD UNIQUE CONSTRAINT to a table is as follows:

ALTER TABLE table name
ADD CONSTRAINT MyUniqueConstraint UNIQUE (columnl, column2...);

The basic syntax of ALTER TABLE to ADD CHECK CONSTRAINT to a table is as follows:

ALTER TABLE table name
ADD CONSTRAINT MyUniqueConstraint CHECK (CONDITION) ;

The basic syntax of ALTER TABLE to ADD PRIMARY KEY constraint to a table is as follows:

ALTER TABLE table name
ADD CONSTRAINT MyPrimaryKey PRIMARY KEY (columnl, column2...);

The basic syntax of ALTER TABLE to DROP CONSTRAINT from a table is as follows:

TUTORIALS POINT
Simply Easy Learning

ALTER TABLE table name
DROP CONSTRAINT MyUniqueConstraint;

If you're using MySQL, the code is as follows:

ALTER TABLE table name
DROP INDEX MyUniqueConstraint;

The basic syntax of ALTER TABLE to DROP PRIMARY KEY constraint from a table is as follows:

ALTER TABLE table name
DROP CONSTRAINT MyPrimaryKey;

If you're using MySQL, the code is as follows:

ALTER TABLE table name
DROP PRIMARY KEY;

Example:

Consider the CUSTOMERS table having the following records:
S e EE L LT +———- fom e fom—m - A
| ID | NAME | AGE | ADDRESS | SALARY |
et ————————— ————— f—————————— f—————————— +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom - +————- fomm - e 4

Following is the example to ADD a new column in an existing table:
ALTER TABLE CUSTOMERS ADD SEX char (1) ;

Now, CUSTOMERS table is changed and following would be output from SELECT statement:

B e to———= tomm e tomm R et +
| ID | NAME | AGE | ADDRESS | SALARY | SEX |
Fom +-——— o o fo————- +
1	Ramesh	32	Ahmedabad	2000.00	NULL
2	Ramesh	25	Delhi	1500.00	NULL
3	kaushik	23	Kota	2000.00	NULL
4	kaushik	25	Mumbai	6500.00	NULL
5	Hardik	27	Bhopal	8500.00	NULL
6	Komal	22	MP	4500.00	NULL
7	Muffy	24	Indore	10000.00	NULL
fom - to———— tomm e R ittt B et +

Following is the example to DROP sex column from existing table:
ALTER TABLE CUSTOMERS DROP SEX;

Now, CUSTOMERS table is changed and following would be output from SELECT statement:

TUTORIALS POINT
Simply Easy Learning

it fom— fomm e fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fom tm——— o o ————— +
1	Ramesh	32	Ahmedabad	2000.00
2	Ramesh	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	kaushik	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
it fom— fomm e +
TUTORIALS POINT

Simply Easy Learning

SQL TRUNCATE TABLE

he SQL TRUNCATE TABLE command is used to delete complete data from an existing table.

You can also use DROP TABLE command to delete complete table but it would remove complete table structure
form the database and you would need to re-create this table once again if you wish you store some data.

Syntax:
The basic syntax of TRUNCATE TABLE is as follows:

TRUNCATE TABLE table name;

Example:

Consider the CUSTOMERS table having the following records:
fom - o= fom - fomm - +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e fo———= fom e fom e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal [22	MP	4500.00	
7	Muffy	24	Indore	10000.00
fomm - o= fomm - fomm - +

Following is the example to truncate:
SQL > TRUNCATE TABLE CUSTOMERS;
Now, CUSTOMERS table is truncated and following would be the output from SELECT statement:

SQL> SELECT * FROM CUSTOMERS;
Empty set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

SQL - Using Views

view is nothing more than a SQL statement that is stored in the database with an associated name. A

view is actually a composition of a table in the form of a predefined SQL query.

A view can contain all rows of a table or select rows from a table. A view can be created from one or many tables
which depends on the written SQL query to create a view.

Views, which are kind of virtual tables, allow users to do the following:
e Structure data in a way that users or classes of users find natural or intuitive.

e Restrict access to the data such that a user can see and (sometimes) modify exactly what they need and no
more.

e Summarize data from various tables which can be used to generate reports.

Creating Views:

Database views are created using the CREATE VIEW statement. Views can be created from a single table,
multiple tables, or another view.

To create a view, a user must have the appropriate system privilege according to the specific implementation.
The basic CREATE VIEW syntax is as follows:

CREATE VIEW view name AS

SELECT columnl, column2.....

FROM table name
WHERE [condition];

You can include multiple tables in your SELECT statement in very similar way as you use them in normal SQL
SELECT query.

Example:
Consider the CUSTOMERS table having the following records:

ot fom—— fmm fomm +
| ID | NAME | AGE | ADDRESS | SALARY |

TUTORIALS POINT
Simply Easy Learning

+ + + +
| | | Ahmedabad | |
\ | | Delhi | \
| kaushik | | Kota |

| Chaitali | 25 | Mumbai | 6500.00

\ | | | \
\ | | | \
\ \ \ | \
+ + + +

Hardik Bhopal
MP
Indore

Now, following is the example to create a view from CUSTOMERS table. This view would be used to have
customer name and age from CUSTOMERS table:

SQL > CREATE VIEW CUSTOMERS VIEW AS
SELECT name, age
FROM CUSTOMERS;

Now, you can query CUSTOMERS_VIEW in similar way as you query an actual table. Following is the example:

SQL > SELECT * FROM CUSTOMERS VIEW;

This would produce the following result:

fom Fo——— +
| name | age |
fomm - Fo——— +
Ramesh	32
Khilan	25
kaushik	23
Chaitali	25
Hardik	27
Komal	22
Muffy	24
fomm fo——— +

The WITH CHECK OPTION:

The WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of the WITH CHECK OPTION is
to ensure that all UPDATE and INSERTSs satisfy the condition(s) in the view definition.

If they do not satisfy the condition(s), the UPDATE or INSERT returns an error.

The following is an example of creating same view CUSTOMERS_VIEW with the WITH CHECK OPTION:

CREATE VIEW CUSTOMERS VIEW AS
SELECT name, age

FROM CUSTOMERS

WHERE age IS NOT NULL

WITH CHECK OPTION;

The WITH CHECK OPTION in this case should deny the entry of any NULL values in the view's AGE column,
because the view is defined by data that does not have a NULL value in the AGE column.

Updating a View:

A view can be updated under certain conditions:

TUTORIALS POINT
Simply Easy Learning

o The SELECT clause may not contain the keyword DISTINCT.
. The SELECT clause may not contain summary functions.

. The SELECT clause may not contain set functions.

. The SELECT clause may not contain set operators.

o The SELECT clause may not contain an ORDER BY clause.
o The FROM clause may not contain multiple tables.

o The WHERE clause may not contain subqueries.

. The query may not contain GROUP BY or HAVING.

. Calculated columns may not be updated.

o All NOT NULL columns from the base table must be included in the view in order for the INSERT query to
function.

So if a view satisfies all the abovementioned rules then you can update a view. Following is an example to update
the age of Ramesh:

SQL > UPDATE CUSTOMERS VIEW
SET AGE = 35
WHERE name='Ramesh';

This would ultimately update the base table CUSTOMERS and same would reflect in the view itself. Now, try to
query base table, and SELECT statement would produce the following result:

fmm e — B Fmm Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e — Fo——— Fomm - Fomm +
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom e Fo———= Fomm - Fomm +

Inserting Rows into a View:

Rows of data can be inserted into a view. The same rules that apply to the UPDATE command also apply to the
INSERT command.

Here, we can not insert rows in CUSTOMERS_VIEW because we have not included all the NOT NULL columns in
this view, otherwise you can insert rows in a view in similar way as you insert them in a table.

TUTORIALS POINT
Simply Easy Learning

Deleting Rows into a View:

Rows of data can be deleted from a view. The same rules that apply to the UPDATE and INSERT commands
apply to the DELETE command.

Following is an example to delete a record having AGE= 22.

SQL > DELETE FROM CUSTOMERS VIEW
WHERE age = 22;

This would ultimately delete a row from the base table CUSTOMERS and same would reflect in the view itself.
Now, try to query base table, and SELECT statement would produce the following result:

fom e — Fo——— Fom = Fomm +
ID | NAME | AGE | ADDRESS | SALARY

fom e to——— Fomm - Fomm +
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
fmm e — R Fmm Fomm +

Dropping Views:

Obviously, where you have a view, you need a way to drop the view if it is no longer needed. The syntax is very
simple as given below:

DROP VIEW view_ name;
Following is an example to drop CUSTOMERS_VIEW from CUSTOMERS table:

DROP VIEW CUSTOMERS VIEW;

TUTORIALS POINT
Simply Easy Learning

SQL HAVING CLAUSE

he HAVING clause enables you to specify conditions that filter which group results appear in the final

results.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause places conditions on
groups created by the GROUP BY clause.

Syntax:

The following is the position of the HAVING clause in a query:

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

The HAVING clause must follow the GROUP BY clause in a query and must also precede the ORDER BY clause
if used. The following is the syntax of the SELECT statement, including the HAVING clause:

SELECT columnl, column2
FROM tablel, table2

WHERE [conditions]
GROUP BY columnl, column?2
HAVING [conditions |
ORDER BY columnl, column?2

Example:

Consider the CUSTOMERS table having the following records:
St ————————— f————— e ——————— e ————————— 3
| ID | NAME | AGE | ADDRESS | SALARY |
fom - +-——— Fo— - Fo— = +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
TUTORIALS POINT

Simply Easy Learning

22 | MP | 4500.00 |
24 | Indore | 10000.00 |

Following is the example, which would display record for which similar age count would be more than or equal to 2:

SQL > SELECT *

FROM CUSTOMERS

GROUP BY age

HAVING COUNT (age) >= 2;

This would produce the following result:

e T fomm - fommm fomm - +

ID | NAME | AGE | ADDRESS | SALARY |
Fom— - o tomm - fomm - +
| 2 | Khilan | 25 | Delhi [1500.00 |
S ettt fomm - fommm fomm o +

TUTORIALS POINT
Simply Easy Learning

CHAPTER

SQL Transactions

transaction is a unit of work that is performed against a database. Transactions are units or sequences

of work accomplished in a logical order, whether in a manual fashion by a user or automatically by some sort of a
database program.

A transaction is the propagation of one or more changes to the database. For example, if you are creating a record
or updating a record or deleting a record from the table, then you are performing transaction on the table. It is
important to control transactions to ensure data integrity and to handle database errors.

Practically, you will club many SQL queries into a group and you will execute all of them together as a part of a
transaction.

Properties of Transactions:

Transactions have the following four standard properties, usually referred to by the acronym ACID:

e Atomicity: ensures that all operations within the work unit are completed successfully; otherwise, the
transaction is aborted at the point of failure, and previous operations are rolled back to their former state.

e Consistency: ensures that the database properly changes states upon a successfully committed transaction.
Isolation: enables transactions to operate independently of and transparent to each other.
Durability: ensures that the result or effect of a committed transaction persists in case of a system failure.

Transaction Control:

There are following commands used to control transactions:

COMMIT: to save the changes.

ROLLBACK: to rollback the changes.

SAVEPOINT: creates points within groups of transactions in which to ROLLBACK
SET TRANSACTION: Places a name on a transaction.

Transactional control commands are only used with the DML commands INSERT, UPDATE and DELETE only.
They can not be used while creating tables or dropping them because these operations are automatically
committed in the database.

The COMMIT Command:

The COMMIT command is the transactional command used to save changes invoked by a transaction to the
database.

TUTORIALS POINT
Simply Easy Learning

The COMMIT command saves all transactions to the database since the last COMMIT or ROLLBACK command.

The syntax for COMMIT command is as follows:

COMMIT;

Example:

Consider the CUSTOMERS table having the following records:
fom - +-——— Fom - fo—mm—————— +
| ID | NAME | AGE | ADDRESS | SALARY \
S e EE L LTy +———- fomm e fom—m - A
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00

5	Hardik	27	Bhopal	8500.00
6	Komal [22	MP	4500.00	
7	Muffy	24	Indore	10000.00
Fom - +-——— Fo— - Fo—m——————— +

Following is the example, which would delete records from the table having age = 25 and then COMMIT the
changes in the database.

SQL> DELETE FROM CUSTOMERS
WHERE AGE = 25;
SQL> COMMIT;

As a result, two rows from the table would be deleted and SELECT statement would produce the following result:

fom e Fo——— Fom - Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e Fo——— Fomm e e et +
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
| 3 | kaushik | 23 | Kota | 2000.00 |
| 5 | Hardik | 27 | Bhopal | 8500.00

| 6 | Komal |22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
fom e Fo——— Fomm - Fomm +

The ROLLBACK Command:

The ROLLBACK command is the transactional command used to undo transactions that have not already been
saved to the database.

The ROLLBACK command can only be used to undo transactions since the last COMMIT or ROLLBACK
command was issued.

The syntax for ROLLBACK command is as follows:

ROLLBACK;

Example:

Consider the CUSTOMERS table having the following records:

TUTORIALS POINT
Simply Easy Learning

fom e — e Fomm Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e — Fo——— Fom - Fomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00

| 6 | Komal | 22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
fom e — e Fomm fomm +

Following is the example, which would delete records from the table having age = 25 and then ROLLBACK the
changes in the database.

SQL> DELETE FROM CUSTOMERS
WHERE AGE = 25;
SQL> ROLLBACK;

As a result, delete operation would not impact the table and SELECT statement would produce the following result:

fom e — Fo———= Fom - Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e to——— R ittt Fomm = +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00

5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom e Fo———= Fom - Fomm +

The SAVEPOINT Command:

A SAVEPOINT is a point in a transaction when you can roll the transaction back to a certain point without rolling
back the entire transaction.

The syntax for SAVEPOINT command is as follows:

SAVEPOINT SAVEPOINT NAME;

This command serves only in the creation of a SAVEPOINT among transactional statements. The ROLLBACK
command is used to undo a group of transactions.

The syntax for rolling back to a SAVEPOINT is as follows:
ROLLBACK TO SAVEPOINT NAME;
Following is an example where you plan to delete the three different records from the CUSTOMERS table. You

want to create a SAVEPOINT before each delete, so that you can ROLLBACK to any SAVEPOINT at any time to
return the appropriate data to its original state:

Example:
Consider the CUSTOMERS table having the following records:

TUTORIALS POINT
Simply Easy Learning

fom e — e Fomm Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e — Fo——— Fom - Fomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00

| 6 | Komal | 22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
fom e — e Fomm fomm +

Now, here is the series of operations:

SQL> SAVEPOINT SP1;

Savepoint created.

SQL> DELETE FROM CUSTOMERS WHERE ID=1;
1 row deleted.

SQL> SAVEPOINT SP2;

Savepoint created.

SQL> DELETE FROM CUSTOMERS WHERE ID=2;
1 row deleted.

SQL> SAVEPOINT SP3;

Savepoint created.

SQL> DELETE FROM CUSTOMERS WHERE ID=3;
1 row deleted.

Now that the three deletions have taken place, say you have changed your mind and decided to ROLLBACK to the
SAVEPOINT that you identified as SP2. Because SP2 was created after the first deletion, the last two deletions
are undone:

SQL> ROLLBACK TO SP2;
Rollback complete.

Notice that only the first deletion took place since you rolled back to SP2:

SQL> SELECT * FROM CUSTOMERS;

R et e +o——— tomm - tom +
| ID | NAME | AGE | ADDRESS | SALARY |
fom e — B Fomm fomm +
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00

| 6 | Komal | 22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
fom e Fo——— Fom - R et +

6 rows selected.

The RELEASE SAVEPOINT Command:

The RELEASE SAVEPOINT command is used to remove a SAVEPOINT that you have created.
The syntax for RELEASE SAVEPOINT is as follows:

RELEASE SAVEPOINT SAVEPOINT NAME;

TUTORIALS POINT
Simply Easy Learning

Once a SAVEPOINT has been released, you can no longer use the ROLLBACK command to undo transactions
performed since the SAVEPOINT.

The SET TRANSACTION Command:

The SET TRANSACTION command can be used to initiate a database transaction. This command is used to
specify characteristics for the transaction that follows.

For example, you can specify a transaction to be read only or read write.
The syntax for SET TRANSACTION is as follows:

SET TRANSACTION [READ WRITE | READ ONLY];

TUTORIALS POINT
Simply Easy Learning

SQL Wildcard Operators

e already have discussed SQL LIKE operator, which is used to compare a value to similar values
using wildcard operators.
SQL supports following two wildcard operators in conjunction with the LIKE operator:
Wildcards Description

The percent sign Matches one or more characters. Note that MS Access uses the asterisk (*) wildcard
(%) character instead of the percent sign (%) wildcard character.

The underscore Matches one character. Note that MS Access uses a question mark (?) instead of the
) underscore (_) to match any one character.

The percent sign represents zero, one, or multiple characters. The underscore represents a single number or
character. The symbols can be used in combinations.

Syntax:
The basic syntax of ‘%’ and *_’ is as follows:

SELECT FROM table name
WHERE column LIKE 'XXXX%'

or

SELECT FROM table name
WHERE column LIKE '3XXXX%'

or

SELECT FROM table name
WHERE column LIKE 'XXXX '

or

SELECT FROM table name
WHERE column LIKE ' XXXX'

or

SELECT FROM table name

TUTORIALS POINT
Simply Easy Learning

WHERE column LIKE ' XXXX '

You can combine N number of conditions using AND or OR operators. Here, XXXX could be any numeric or string
value.

Example:
Here are number of examples showing WHERE part having different LIKE clause with '%' and '_' operators:
Statement Description

WHERE SALARY LIKE '200%' Finds any values that start with 200

Y,VHERE SR LI Finds any values that have 200 in any position
%200%
WHERE SALARY LIKE '_00%' Finds any values that have 00 in the second and third positions

WHERE SALARY LIKE
2 _%_%'

Finds any values that start with 2 and are at least 3 characters in length
WHERE SALARY LIKE '%2' Finds any values that end with 2

WHERE SALARY LIKE ' 2%3' Finds any values that have a 2 in the second position and end with a 3
WHERE SALARY LIKE 2___3' Finds any values in a five-digit number that start with 2 and end with 3

Let us take a real example, consider the CUSTOMERS table having the following records:

o +o——— tom - B e +
| ID | NAME | AGE | ADDRESS | SALARY

fmm e — e Fmm Fomm +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom +o——— Fom - tomm +

Following is an example, which would display all the records from CUSTOMERS table where SALARY starts with
200:

SQL> SELECT * FROM CUSTOMERS
WHERE SALARY LIKE '200%';

This would produce the following result:

fmm e B Fmm Fomm +
| ID | NAME | AGE | ADDRESS | SALARY |
fom +o——— Fom e B et +
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
| 3 | kaushik | 23 | Kota | 2000.00 |
fom e — Fo——— fom = fomm
TUTORIALS POINT

Simply Easy Learning

SQL Date Functions

ollowing is a list of all important Date and Time related functions available through SQL. There are various

other functions supported by your RDBMS. Given list is based on MySQL RDBMS.

Name
ADDDATE()
ADDTIME()
CONVERT TZ()

CURDATE()
CURRENT DATE(), CURRENT DATE

CURRENT TIME(), CURRENT TIME

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Description

Adds dates

Adds time

Converts from one timezone to another
Returns the current date

Synonyms for CURDATE()

Synonyms for CURTIME()

Synonyms for NOW()

CURTIME() Returns the current time

DATE_ADD() Adds two dates

DATE FORMAT() Formats date as specified

DATE_SUB() Subtracts two dates

DATE() Extracts the date part of a date or datetime expression
DATEDIFFE() Subtracts two dates

DAY() Synonym for DAYOFMONTH()
DAYNAME() Returns the name of the weekday
DAYOFMONTH() Returns the day of the month (1-31)
DAYOFWEEK() Returns the weekday index of the argument
TUTORIALS POINT

Simply Easy Learning

DAYOFYEAR() Returns the day of the year (1-366)

EXTRACT Extracts part of a date

FROM_DAYS() Converts a day number to a date
FROM_UNIXTIME() Formats date as a UNIX timestamp

HOUR() Extracts the hour

LAST DAY Returns the last day of the month for the argument
LOCALTIME(), LOCALTIME Synonym for NOW(()

LOCALTIVESTAME) Synomym for NOW()

MAKEDATE() Creates a date from the year and day of year
MAKETIME MAKETIME()

MICROSECOND() Returns the microseconds from argument
MINUTE() Returns the minute from the argument

MONTH() Returns the month from the date passed
MONTHNAME() Returns the name of the month

NOW Returns the current date and time

PERIOD_ADD() Adds a period to a year-month

PERIOD_DIFF() Returns the number of months between periods
QUARTER() Returns the quarter from a date argument

SEC TO TIME() Converts seconds to 'HH:MM:SS' format
SECOND() Returns the second (0-59)

STR_TO DATE() Converts a string to a date

SUBDATE() When invoked with three arguments a synonym for DATE_SUB()
SUBTIME() Subtracts times

SYSDATE() Returns the time at which the function executes
TIME _FORMAT() Formats as time

TIME TO SEC() Returns the argument converted to seconds
TIME() Extracts the time portion of the expression passed
TIMEDIFF() Subtracts time

TMESTAMEQ e o o
TUTORIALS POINT

Simply Easy Learning

TIMESTAMPADD() Adds an interval to a datetime expression

TIMESTAMPDIFF() Subtracts an interval from a datetime expression
TO_DAYS() Returns the date argument converted to days
UNIX TIMESTAMP() Returns a UNIX timestamp

UTC DATE() Returns the current UTC date

UTC TIME() Returns the current UTC time

UTC TIMESTAMP() Returns the current UTC date and time
WEEK() Returns the week number

WEEKDAY() Returns the weekday index
WEEKOFYEAR() Returns the calendar week of the date (1-53)
YEAR() Returns the year

YEARWEEK() Returns the year and week

ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for DATE_ADD(). The
related function SUBDATE() is a synonym for DATE_SUB(). For information on the INTERVAL unit argument, see
the discussion for DATE_ADD().

mysqgl> SELECT DATE ADD('1998-01-02', INTERVAL 31 DAY);

e et et e +
| DATE ADD('1998-01-02', INTERVAL 31 DAY) |
e et e e +
| 1998-02-02 |
e e ettt +

1 row in set (0.00 sec)

mysgl> SELECT ADDDATE ('1998-01-02', INTERVAL 31 DAY);

et et I e +
| ADDDATE ('1998-01-02', INTERVAL 31 DAY) |
e e e e e +
| 1998-02-02 |
e i et e +

1 row in set (0.00 sec)

When invoked with the days form of the second argument, MySQL treats it as an integer number of days to be
added to expr.

mysql> SELECT ADDDATE ('1998-01-02', 31);

e ettt T L P +
| DATE ADD('1998-01-02', INTERVAL 31 DAY) |
e +
| 1998-02-02 |
ettt T +

TUTORIALS POINT
Simply Easy Learning

ADDTIME(exprl,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression, and expr2 is a time
expression.

mysqgl> SELECT ADDTIME ('1997-12-31 23:59:59.999999"','1 1:1:1.000002") ;

et +
| DATE ADD('1997-12-31 23:59:59.999999"','1 1:1:1.000002") |
o +
| 1998-01-02 01:01:01.000001 |
e +

1 row in set (0.00 sec)

CONVERT_TZ(dt,from_tz,to_tz)

This converts a datetime value dt from the time zone given by from_tz to the time zone given by to_tz and returns
the resulting value. This function returns NULL if the arguments are invalid.

mysgl> SELECT CONVERT TZ('2004-01-01 12:00:00', 'GMT', 'MET"') ;

o +
| CONVERT TZ('2004-01-01 12:00:00', 'GMT', '"MET") |
e e e e e +
| 2004-01-01 13:00:00 |
o +

1 row in set (0.00 sec)

mysql> SELECT CONVERT TZ('2004-01-01 12:00:00','+00:00',"'+10:00");

e e +
| CONVERT TZ('2004-01-01 12:00:00','+00:00',"'+10:00") |
e e et e +
| 2004-01-01 22:00:00 |
it +

1 row in set (0.00 sec)

CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the function
is used in a string or numeric context.

mysgl> SELECT CURDATE () ;

it +
| CURDATE () |
o +
| 1997-12-15 |
e +

1 row in set (0.00 sec)

mysql> SELECT CURDATE () + 0;

o +
| CURDATE () + O |
e et T +
| 19971215 |
o +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

CURRENT_DATE and CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE()

CURTIME()

Returns the current time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the function is used
in a string or numeric context. The value is expressed in the current time zone.

mysqgl> SELECT CURTIME () ;

B et +
| CURTIME () |
ittt L L +
| 23:50:26 |
e +

1 row in set (0.00 sec)

mysgl> SELECT CURTIME () + 0;

et +
| CURTIME () + O |
e e et +
| 235026 |
o +

1 row in set (0.00 sec)

CURRENT_TIME and CURRENT_TIME()

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW/().

DATE(expr)
Extracts the date part of the date or datetime expression expr.

mysqgl> SELECT DATE ('2003-12-31 01:02:03");

e +
| DATE ('2003-12-31 01:02:03") |
- +
| 2003-12-31 |
o S e S S e e S e e S S e S S e S S S S S S e S S e S S e S S e +

1 row in set (0.00 sec)

DATEDIFF(exprl,expr2)

DATEDIFF() returns expr1 . expr2 expressed as a value in days from one date to the other. expr1 and expr2 are
date or date-and-time expressions. Only the date parts of the values are used in the calculation.

mysqgl> SELECT DATEDIFF ('1997-12-31 23:59:59','1997-12-30") ;

e e e e e +
| DATEDIFF ('1997-12-31 23:59:59','1997-12-30") |
et et e e +

1 |
e e e e +

TUTORIALS POINT
Simply Easy Learning

1 row in set (0.00 sec)

DATE_ADD(date,INTERVAL expr unit),
DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. date is a DATETIME or DATE value specifying the starting date. expr is
an expression specifying the interval value to be added or subtracted from the starting date. expr is a string; it may
start with a ‘-* for negative intervals. unit is a keyword indicating the units in which the expression should be

interpreted.

The INTERVAL keyword and the unit specifier are not case sensitive.

The following table shows the expected form of the expr argument for each unit value;

unit Value
MICROSECOND
SECOND

MINUTE

HOUR

DAY

WEEK

MONTH

QUARTER

YEAR
SECOND_MICROSECOND
MINUTE_MICROSECOND
MINUTE_SECOND
HOUR_MICROSECOND
HOUR_SECOND
HOUR_MINUTE
DAY_MICROSECOND
DAY_SECOND
DAY_MINUTE

DAY_HOUR

ExpectedexprFormat
MICROSECONDS

SECONDS

MINUTES

HOURS

DAYS

WEEKS

MONTHS

QUARTERS

YEARS
'SECONDS.MICROSECONDS'
'MINUTES.MICROSECONDS'
'MINUTES:SECONDS'
'HOURS.MICROSECONDS'
'HOURS:MINUTES:SECONDS'
'HOURS:MINUTES'
'DAYS.MICROSECONDS'
'DAYS HOURS:MINUTES:SECONDS'
'DAYS HOURS:MINUTES'

'DAYS HOURS'

TUTORIALS POINT
Simply Easy Learning

YEAR_MONTH 'YEARS-MONTHS'
The values QUARTER and WEEK are available beginning with MySQL 5.0.0.

mysql> SELECT DATE ADD('1997-12-31 23:59:59°',
—-> INTERVAL 'l:1' MINUTE SECOND) ;

ettt +
| DATE ADD('1997-12-31 23:59:59', INTERVAL... |
et et e e +
| 1998-01-01 00:01:00 |
o +

1 row in set (0.00 sec)

mysgl> SELECT DATE ADD('1999-01-01', INTERVAL 1 HOUR);

o +
| DATE ADD('1999-01-01"', INTERVAL 1 HOUR) |
ettt e e +
| 1999-01-01 01:00:00 |
e e e e e +

1 row in set (0.00 sec)

DATE_FORMAT(date,format)

Formats the date value according to the format string.

The following specifiers may be used in the format string. The ‘%’ character is required before format specifier
characters.

Specifier Description

Y%a Abbreviated weekday name (Sun..Sat)
%b Abbreviated month name (Jan..Dec)
%C Month, numeric (0..12)

%D Day of the month with English suffix (Oth, 1st, 2nd, 3rd, .)
%d Day of the month, numeric (00..31)
%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%l Hour (01..12)

%ol Minutes, numeric (00..59)

Yo Day of year (001..366)

%ok Hour (0..23)

%l Hour (1..12)

TUTORIALS POINT

Simply Easy Learning

%M Month name (January..December)
Y%om Month, numeric (00..12)
%p AM or PM
Yor Time, 12-hour (hh:mm:ss followed by AM or PM)
%S Seconds (00..59)
%S Seconds (00..59)
%T Time, 24-hour (hh:mm:ss)
%U Week (00..53), where Sunday is the first day of the week
YU Week (00..53), where Monday is the first day of the week
%V Week (01..53), where Sunday is the first day of the week; used with %X
YoV Week (01..53), where Monday is the first day of the week; used with %x
%W Weekday name (Sunday..Saturday)
YW Day of the week (0=Sunday..6=Saturday)
%X Year for the week where Sunday is the first day of the week, numeric, four digits; used with %V
YoX Year for the week, where Monday is the first day of the week, numeric, four digits; used with %v
%Y Year, numeric, four digits
Yy Year, numeric (two digits)
%% A literal .%. character
YoX x, for any.x. not listed above
mysql> SELECT DATE FORMAT ('1997-10-04 22:23:00', '"SW SM 3Y');
| DATE FORMAT ('1987-10-04 22:23:00, 'em M 2¢') |
| saturday octover 1997 |
e et et et L +
1 row in set (0.00 sec)
mysqgl> SELECT DATE FORMAT ('1997-10-04 22:23:00'
-> '3H %k %I %r 3T %S %w');
e et Rt +
| DATE FORMAT ('1997-10-04 22:23:00....... |
|22 22 10 10123500 BM 22123500 00 6 |
e et it +
TUTORIALS POINT

Simply Easy Learning

1 row in set (0.00 sec)

DATE_SUB(date,INTERVAL expr unit)

This is similar to DATE_ADD() function.

DAY(date)

DAY() is a synonym for DAYOFMONTH().

DAYNAME(date)

Returns the name of the weekday for date.

mysql> SELECT DAYNAME ('1998-02-05") ;

et i +
| DAYNAME ('1998-02-05") |
e T +
| Thursday |
o +

1 row in set (0.00 sec)

DAYOFMONTH(date)

Returns the day of the month for date, in the range 0 to 31.

mysqgl> SELECT DAYOFMONTH ('1998-02-03");

e e e e +
| DAYOFMONTH ('1998-02-03") |
e e e e e e +

3 |
e +

1 row in set (0.00 sec)

DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, ., 7 = Saturday). These index values correspond to
the ODBC standard.

mysql> SELECT DAYOFWEEK ('1998-02-03");

o +
|DAYOFWEEK ('1998-02-03") |
e +
| 3 |
e et e T T +

1 row in set (0.00 sec)

DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysqgl> SELECT DAYOFYEAR('1998-02-03");

TUTORIALS POINT
Simply Easy Learning

| DAYOFYEAR('1998-02-03") |

1 row in set (0.00 sec)

EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(), but extracts
parts from the date rather than performing date arithmetic.

mysgl> SELECT EXTRACT (YEAR FROM '1999-07-02");

et +
| EXTRACT (YEAR FROM '1999-07-02") |
et +
| 1999 |
i +

1 row in set (0.00 sec)

mysqgl> SELECT EXTRACT (YEAR MONTH FROM '1999-07-02 01:02:03"');

e ettt +
| EXTRACT (YEAR MONTH FROM '1999-07-02 01:02:03") |
o +
[199907 |
et et +

1 row in set (0.00 sec)

FROM_DAYS(N)

Given a day number N, returns a DATE value.

mysql> SELECT FROM DAYS (729669) ;

ittt +

| FROM DAYS (729669) |

o +
1997-10-07

oo +

1 row in set (0.00 sec)

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the advent of the
Gregorian calendar (1582).

FROM_UNIXTIME(unix_timestamp)
FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD HH:MM:SS' or
YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context. The value
is expressed in the current time zone. unix_timestamp is an internal timestamp value such as is produced by the
UNIX_TIMESTAMP() function.

If format is given, the result is formatted according to the format string, which is used the same way as listed in the
entry for the DATE_FORMAT() function.

mysgl> SELECT FROM UNIXTIME (875996580) ;

TUTORIALS POINT
Simply Easy Learning

1 row in set (0.00 sec)

HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However, the range of
TIME values actually is much larger, so HOUR can return values greater than 23.

mysgl> SELECT HOUR('10:05:03"') ;

et e +
| HOUR('10:05:03") |
o +

10 |
Fo +

1 row in set (0.00 sec)

LAST _DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month. Returns NULL if
the argument is invalid.

mysqgl> SELECT LAST DAY ('2003-02-05");

e T e e e +
LAST DAY ('2003-02-05")
o +
| 2003-02-28 |
et et B e +

1 row in set (0.00 sec)

LOCALTIME and LOCALTIME()

LOCALTIME and LOCALTIME() are synonyms for NOW().

LOCALTIMESTAMP and LOCALTIMESTAMP()

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result is NULL.

mysgl> SELECT MAKEDATE (2001,31), MAKEDATE (2001,32);

+

| MAKEDATE (2001, 31), MAKEDATE (2001, 32) |
e +
| '2001-01-31', '2001-02-01" |
e ittt e LT +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute and second arguments.

mysql> SELECT MAKETIME (12,15, 30);

i +
| MAKETIME (12,15, 30) [
e +
| '12:15:30" |
oo +

1 row in set (0.00 sec)

MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range from 0 to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456");

ettt e e T +
| MICROSECOND ('12:00:00.123456") |
ettt it +
| 123456 |
e et +

1 row in set (0.00 sec)

MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE ('98-02-03 10:05:03');

e +
| MINUTE ('98-02-03 10:05:03")

Tttt +
| 5 |
o +

1 row in set (0.00 sec)

MONTH(date)

Returns the month for date, in the range 0 to 12.

mysql> SELECT MONTH ('1998-02-03")

o +
MONTH ('1998-02-03")

e e e e +

| 2 |

o +

1 row in set (0.00 sec)

MONTHNAME(date)

Returns the full name of the month for date.

mysgl> SELECT MONTHNAME ('1998-02-05") ;

TUTORIALS POINT
Simply Easy Learning

| MONTHNAME ('1998-02-05") |

1 row in set (0.00 sec)

NOW()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format,
depending on whether the function is used in a string or numeric context. The value is expressed in the current

time zone.

mysgl> SELECT NOW () ;

ettt +
| NOW () I
e +
| 1997-12-15 23:50:26 |
et it I T +

1 row in set (0.00 sec)

PERIOD_ADD(P.N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM. Note that
the period argument P is not a date value.

mysql> SELECT PERIOD ADD (9801,2);

e e i +
| PERIOD ADD(9801,2) |
tommmmm— B e +
| 199803 |
e e e +

1 row in set (0.00 sec)

PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM or
YYYYMM. Note that the period arguments P1 and P2 are not date values.

mysqgl> SELECT PERIOD DIFF (9802,199703);

e e e L e e 4
| PERIOD DIFF (9802,199703)

- +
| 11 |
o +
1 row in set (0.00 sec)

QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysgl> SELECT QUARTER ('98-04-01");
ettt +
| QUARTER ('98-04-01") |
- 3

TUTORIALS POINT
Simply Easy Learning

1 row in set (0.00 sec)

SECOND(time)

Returns the second for time, in the range 0 to 59.

mysgl> SELECT SECOND('10:05:03");

Tt Tttt +
| SECOND('10:05:03") |
o +

3 |
T et e +

1 row in set (0.00 sec)

SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes and seconds, as a value in 'HH:MM:SS' or HHMMSS
format, depending on whether the function is used in a string or numeric context.

mysgl> SELECT SEC_TO TIME (2378) ;

o +
| SEC TO TIME (2378) |
e e "
| 00:39:38 |
o +

1 row in set (0.00 sec)

STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string format.
STR_TO_DATE() returns a DATETIME value if the format string contains both date and time parts or a DATE or
TIME value if the string contains only date or time parts.

mysqgl> SELECT STR_TO DATE('04/31/2004', 'Sm/%d/%Y');
o +
STR_TO DATE ('04/31/2004', '%m/%d/%Y')
e +
| 2004-04-31 |
et +

1 row in set (0.00 sec)

SUBDATE(date,INTERVAL expr unit) and
SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym for DATE_SUB(). For
information on the INTERVAL unit argument, see the discussion for DATE_ADD().

mysqgl> SELECT DATE SUB('1998-01-02', INTERVAL 31 DAY);

e T e e T e +
| DATE SUB('1998-01-02', INTERVAL 31 DAY) |
o +
| 1997-12-02 |
e it e +

TUTORIALS POINT
Simply Easy Learning

1 row in set (0.00 sec)

mysgl> SELECT SUBDATE ('1998-01-02', INTERVAL 31 DAY);

o +

| SUBDATE ('1998-01-02"', INTERVAL 31 DAY) |

et +
1997-12-02

o +

1 row in set (0.00 sec)

SUBTIME(exprl,expr2)

SUBTIME() returns expr1 . expr2 expressed as a value in the same format as expr1. expr1 is a time or datetime
expression, and expr2 is a time.

mysqgl> SELECT SUBTIME ('1997-12-31 23:59:59.999999"',
-> '1 1:1:1.000002");

et +
SUBTIME ('1997-12-31 23:59:59.999999'...
e +
| 1997-12-30 22:58:58.999997
et +

1 row in set (0.00 sec)

SYSDATE()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format,
depending on whether the function is used in a string or numeric context.

mysgl> SELECT SYSDATE () ;

o +
| SYSDATE () |
ettt et +
2006-04-12 13:47:44
e Tt E e e +

1 row in set (0.00 sec)

TIME(expr)
Extracts the time part of the time or datetime expression expr and returns it as a string.

mysgl> SELECT TIME ('2003-12-31 01:02:03"'");

e +
| TIME('2003-12-31 01:02:03")

e +
| 01:02:03 |
e +

1 row in set (0.00 sec)

TIMEDIFF(exprl,expr2)

TIMEDIFF() returns expri . expr2 expressed as a time value. expr1 and expr2 are time or date-and-time
expressions, but both must be of the same type.

mysqgl> SELECT TIMEDIFF ('1997-12-31 23:59:59.000001"',
-> '1997-12-30 01:01:01.000002") ;

TUTORIALS POINT
Simply Easy Learning

1 row in set (0.00 sec)

TIMESTAMP(expr), TIMESTAMP(exprl,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime value. With two
arguments, it adds the time expression expr2 to the date or datetime expression expr1 and returns the result as a

datetime value.

mysql> SELECT TIMESTAMP ('2003-12-31");

o +
TIMESTAMP ('2003-12-31")

Fo +

| 2003-12-31 00:00:00 |

e e e e e e e +

1 row in set (0.00 sec)

TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The unit for interval is given
by the unit argument, which should be one of the following values: FRAC_SECOND, SECOND, MINUTE, HOUR,

DAY, WEEK, MONTH, QUARTER or YEAR.

The unit value may be specified using one of keywords as shown or with a prefix of SQL_TSI_. For example, DAY
and SQL_TSI_DAY both are legal.

mysgl> SELECT TIMESTAMPADD (MINUTE,1,'2003-01-02") ;

e et e e +
| TIMESTAMPADD (MINUTE, 1, '2003-01-02") |
ettt e +
| 2003-01-02 00:01:00 |
o +

1 row in set (0.00 sec)

TIMESTAMPDIFF(unit,datetime_exprl,datetime_expr2)

Returns the integer difference between the date or datetime expressions datetime_expr1 and datetime_expr2. The
unit for the result is given by the unit argument. The legal values for unit are the same as those listed in the
description of the TIMESTAMPADD() function.

mysqgl> SELECT TIMESTAMPDIFF (MONTH, '2003-02-01"', '2003-05-01") ;

e et +
| TIMESTAMPDIFF (MONTH, '2003-02-01"','2003-05-01") |
e +
| 3 |
ettt +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format specifiers only for hours,
minutes and seconds.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers produce a
value larger than the usual range of 0..23. The other hour format specifiers produce the hour value modulo 12.

e e +
| TIME FORMAT ('100:00:00', '%H %k %h %I %1'") |
e et e e +
| 100 100 04 04 4 |
et +

1 row in set (0.00 sec)

TIME_TO_SEC(time)
Returns the time argument converted to seconds.

mysqgl> SELECT TIME TO SEC('22:23:00'");

ettt T L P +
| TIME_TO SEC('22:23:00'") |
o +
| 80580 |
o +

1 row in set (0.00 sec)

TO_DAYS(date)

Given a date, returns a day number (the number of days since year 0).

mysgl> SELECT TO DAYS (950501) ;

o +
| TO DAYS (950501) |
B e +
| 728779 |
et +

1 row in set (0.00 sec)

UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since '1970-01-01 00:00:00' UTC) as an unsigned
integer. If UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as seconds
since '1970-01-01 00:00:00' UTC. date may be a DATE string, a DATETIME string, a TIMESTAMP, or a number in
the format YYMMDD or YYYYMMDD.

mysgl> SELECT UNIX TIMESTAMP () ;

e e e e +
| UNIX TIMESTAMP () |
o +
| 882226357 |
et et T e +

1 row in set (0.00 sec)

mysgl> SELECT UNIX TIMESTAMP ('1997-10-04 22:23:00");

TUTORIALS POINT
Simply Easy Learning

1 row in set (0.00 sec)

UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the
function is used in a string or numeric context.

mysqgl> SELECT UTC DATE (), UTC DATE() + 0;
et ettt +
UTC DATE (), UTC DATE () + 0
e +
|

2003-08-14, 20030814

1 row in set (0.00 sec)

UTC_TIME, UTC_TIME()

Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the function is
used in a string or numeric context.

mysql> SELECT UTC TIME (), UTC TIME() + O;

e e e e +
UTC_TIME (), UTC TIME () + O

et et e e +
18:07:53, 180753

it et e +

1 row in set (0.00 sec)

UTC_TIMESTAMP, UTC_TIMESTAMP()

Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format,
depending on whether the function is used in a string or numeric context.

mysgl> SELECT UTC_TIMESTAMP (), UTC TIMESTAMP () + O;
Fo e +
UTC_TIMESTAMP (), UTC_TIMESTAMP () + O
e +
| 2003-08-14 18:08:04, 20030814180804
4

1 row in set (0.00 sec)

WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() allows you to specify whether
the week starts on Sunday or Monday and whether the return value should be in the range from 0 to 53 or from 1
to 53. If the mode argument is omitted, the value of the default_week_format system variable is used

Mode First Day of week Range Week 1 is the first week.

0 Sunday 0-53 with a Sunday in this year

TUTORIALS POINT
Simply Easy Learning

1 Monday 0-53 with more than 3 days this year

2 Sunday 1-53 with a Sunday in this year
3 Monday 1-53 with more than 3 days this year
4 Sunday 0-53 with more than 3 days this year
5 Monday 0-53 with a Monday in this year
6 Sunday 1-53 with more than 3 days this year
7 Monday 1-53 with a Monday in this year

mysql> SELECT WEEK ('1998-02-20");

e e e e e +
| WEEK('1998-02-20")

et Tt L +
|7 |
et et e e +

1 row in set (0.00 sec)

WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, . 6 = Sunday).

mysqgl> SELECT WEEKDAY ('1998-02-03 22:23:00") ;

o +
| WEEKDAY ('1998-02-03 22:23:00") |
e e e e +
| 1 [
o +

1 row in set (0.00 sec)

WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a compatibility
function that is equivalent to WEEK(date,3).

mysgl> SELECT WEEKOFYEAR('1998-02-20"');

e +
| WEEKOFYEAR('1998-02-20") |
- +
| 8 |
S S e S S e e S S e S S S S S e S S S S S S e S e e S S e S S e +

1 row in set (0.00 sec)

YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the .zero. date.

mysql> SELECT YEAR('98-02-03');

e e e e e +
| YEAR('98-02-03") |
o +

1998 |
TUTORIALS POINT

Simply Easy Learning

YEARWEEK(date), YEARWEEK(date,mode)

Returns year and week for a date. The mode argument works exactly like the mode argument to WEEK(). The
year in the result may be different from the year in the date argument for the first and the last week of the year.

mysql> SELECT YEARWEEK ('1987-01-01");

1 row in set (0.00 sec)

Note that the week number is different from what the WEEK() function would return (0) for optional arguments 0 or
1, as WEEK() then returns the week in the context of the given year.

For more information, check MySQL Official Website - Date and Time Functions

TUTORIALS POINT
Simply Easy Learning

SQL Temporary Tables

here are RDBMS, which support temporary tables. Temporary Tables are a great feature that lets you

store and process intermediate results by using the same selection, update, and join capabilities that you can use
with typical SQL Server tables.

The temporary tables could be very useful in some cases to keep temporary data. The most important thing that
should be known for temporary tables is that they will be deleted when the current client session terminates.

Temporary tables are available in MySQL version 3.23 onwards. If you use an older version of MySQL than 3.23,
you can't use temporary tables, but you can use heap tables.

As stated earlier, temporary tables will only last as long as the session is alive. If you run the code in a PHP script,
the temporary table will be destroyed automatically when the script finishes executing. If you are connected to the
MySQL database server through the MySQL client program, then the temporary table will exist until you close the
client or manually destroy the table.

Example:

Here is an example showing you usage of temporary table:

mysqgl> CREATE TEMPORARY TABLE SALESSUMMARY (

-> product name VARCHAR (50) NOT NULL
, total sales DECIMAL (12,2) NOT NULL DEFAULT 0.00
-> , avg_unit price DECIMAL(7,2) NOT NULL DEFAULT 0.00
-> , total units sold INT UNSIGNED NOT NULL DEFAULT O

Query OK, 0 rows affected (0.00 sec)

mysgl> INSERT INTO SALESSUMMARY
-> (product name, total sales, avg unit price, total units sold)
-> VALUES
-> ('cucumber', 100.25, 90, 2);

mysqgl> SELECT * FROM SALESSUMMARY;

emmmmms=s===== femmmmmmmmm=== femmmmmmmsmmma=== femmmmmsssssssm==== +
| product name | total sales | avg unit price | total units sold |
femmmmm======== s femm=mmms======== emmssmssss======== +
| cucumber | 100.25 | 90.00 | 2 |
femmmmmmss=m=== femmmmmmmmm=== femmmmmmmssmms== e +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

When you issue a SHOW TABLES command, then your temporary table would not be listed out in the list. Now if
you will log out of the MySQL session and then you will issue a SELECT command, then you will find no data
available in the database. Even your temporary table would also not exist.

Dropping Temporary Tables:

By default, all the temporary tables are deleted by MySQL when your database connection gets terminated. Still
you want to delete them in between, then you do so by issuing DROP TABLE command.

Following is the example on dropping a temproary table.

mysgl> CREATE TEMPORARY TABLE SALESSUMMARY (
-> product name VARCHAR (50) NOT NULL
-> , total sales DECIMAL(12,2) NOT NULL DEFAULT 0.00
-> , avg_unit price DECIMAL(7,2) NOT NULL DEFAULT 0.00
-> , total units sold INT UNSIGNED NOT NULL DEFAULT O

Query OK, 0 rows affected (0.00 sec)

mysqgl> INSERT INTO SALESSUMMARY
-> (product name, total sales, avg unit price, total units sold)
-> VALUES
-> ('cucumber', 100.25, 90, 2);

mysqgl> SELECT * FROM SALESSUMMARY;
e

| product name
T
| cucumber

+ ______________
1 row in set (0.00 sec)

mysgl> DROP TABLE SALESSUMMARY;

mysgl> SELECT * FROM SALESSUMMARY;

ERROR 1146: Table 'TUTORIALS.SALESSUMMARY' doesn't exist

+— + — +

TUTORIALS POINT
Simply Easy Learning

SQL Clone Tables

here may be a situation when you need an exact copy of a table and CREATE TABLE ... SELECT...

doesn't suit your purposes because the copy must include the same indexes, default values, and so forth.

If you are using MySQL RDBMS, you can handle this situation by the following steps:

e Use SHOW CREATE TABLE command to get a CREATE TABLE statement that specifies the source table's
structure, indexes and all.

e Modify the statement to change the table name to that of the clone table and execute the statement. This way
you will have exact clone table.

e Optionally, if you need the table contents copied as well, issue an INSERT INTO ... SELECT statement, too.

Example:

Try out the following example to create a clone table for TUTORIALS_TBL, whose structure is as follows:

Step 1:

Get complete structure about table.

SQL> SHOW CREATE TABLE TUTORIALS TBL \G;
Ak hkhkhkkhkkhkhkhkhkhkhkhkkhhhhhhkhkhkhkkdx*x*x 1. row Ak Ak Kk Kk khkhkhkhkhkhrkhkhkkhkkhkhhhhhkhkhkkkx*xx*x
Table: TUTORIALS TBL

Create Table: CREATE TABLE \TUTORIALsiTBL\ (
"tutorial id’ int(11) NOT NULL auto_increment,
“tutorial title’ varchar (100) NOT NULL default '',
“tutorial author® varchar (40) NOT NULL default '',
‘submission date’ date default NULL,
PRIMARY KEY (\tutorialiid\),
UNIQUE KEY \AUTHORilNDEX\ (\tutorialiauthor‘)

) TYPE=MyISAM

1 row in set (0.00 sec)

Step 2:

Rename this table and create another table.

TUTORIALS POINT
Simply Easy Learning

SQL> CREATE TABLE "CLONE TBL (
-> “tutorial id' int(11l) NOT NULL auto_ increment,
-> “tutorial title’ wvarchar(100) NOT NULL default '',
-> “tutorial author' varchar (40) NOT NULL default '',
-> ‘submission date’ date default NULL,
-> PRIMARY KEY (\tutorialiid\),
-> UNIQUE KEY ‘AUTHORiINDEX‘ (\tutorialiauthor‘)

->) TYPE=MyISAM;

Query OK, 0 rows affected (1.80 sec)

Step 3:

After executing step 2, you will clone a table in your database. If you want to copy data from old table, then you
can do it by using INSERT INTO... SELECT statement.

SQL> INSERT INTO CLONE TBL (tutorial id,

-> tutorial title,

-> tutorial author,
-> submission date)
-> SELECT tutorial id,tutorial title,

-> tutorial author, submission date,

-> FROM TUTORIALS TBL;
Query OK, 3 rows affected (0.07 sec)
Records: 3 Duplicates: 0 Warnings: 0

Finally, you will have exact clone table as you wanted to have.

TUTORIALS POINT
Simply Easy Learning

SQL Sub Queries

Subquery or Inner query or Nested query is a query within another SQL query and embedded within

the WHERE clause.

A subquery is used to return data that will be used in the main query as a condition to further restrict the data to
be retrieved.

Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along with the operators
like =, <, >, >=, <=, IN, BETWEEN etc.

There are a few rules that subqueries must follow:
e Subqueries must be enclosed within parentheses.

e A subquery can have only one column in the SELECT clause, unless multiple columns are in the main query
for the subquery to compare its selected columns.

e An ORDER BY cannot be used in a subquery, although the main query can use an ORDER BY. The GROUP
BY can be used to perform the same function as the ORDER BY in a subquery.

e Subqueries that return more than one row can only be used with multiple value operators, such as the IN
operator.

e The SELECT list cannot include any references to values that evaluate to a BLOB, ARRAY, CLOB, or
NCLOB.

e A subquery cannot be immediately enclosed in a set function.

e The BETWEEN operator cannot be used with a subquery; however, the BETWEEN operator can be used
within the subquery.

Subqueries with the SELECT Statement:

Subqueries are most frequently used with the SELECT statement. The basic syntax is as follows:

SELECT column name [, column name]
FROM tablel [, table2]
WHERE column_name OPERATOR

TUTORIALS POINT
Simply Easy Learning

(SELECT column name [, column name]

FROM tablel [, table2]
[WHERE])

Example:

Consider the CUSTOMERS table having the following records:
fom - +o———= Fo— - e +
| ID | NAME | AGE | ADDRESS | SALARY \
fom - F-——— Fo—mm - Fo—m - +
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom - +———- fomm - R +

Now, let us check the following subquery with SELECT statement:

SQL> SELECT *
FROM CUSTOMERS
WHERE ID IN (SELECT ID
FROM CUSTOMERS
WHERE SALARY > 4500) ;

This would produce the following result:

o —— +-——— o o +

| ID | NAME | AGE | ADDRESS | SALARY |

fom e — Fo——— Fomm fom +
4 | Chaitali | 25 | Mumbai | 6500.00

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

fom e Fo——— Fomm fom +

Subqueries with the INSERT Statement:

Subqueries also can be used with INSERT statements. The INSERT statement uses the data returned from the
subquery to insert into another table. The selected data in the subquery can be modified with any of the character,
date or number functions.

The basic syntax is as follows:

INSERT INTO table name [(columnl [, column2])]
SELECT [*|columnl [, column2]
FROM tablel [, table2]
[WHERE VALUE OPERATOR]

Example:

Consider a table CUSTOMERS_BKP with similar structure as CUSTOMERS table. Now to copy complete
CUSTOMERS table into CUSTOMERS_BKP, following is the syntax:

SQL> INSERT INTO CUSTOMERS BKP
SELECT * FROM CUSTOMERS

TUTORIALS POINT
Simply Easy Learning

WHERE ID IN (SELECT ID
FROM CUSTOMERS) ;

Subqueries with the UPDATE Statement:

The subquery can be used in conjunction with the UPDATE statement. Either single or multiple columns in a table
can be updated when using a subquery with the UPDATE statement.

The basic syntax is as follows:

UPDATE table
SET column name = new value
[WHERE OPERATOR [VALUE]
(SELECT COLUMN_ NAME
FROM TABLE NAME)
[WHERE)]

Example:
Assuming, we have CUSTOMERS_BKP table available which is backup of CUSTOMERS table.

Following example updates SALARY by 0.25 times in CUSTOMERS table for all the customers whose AGE is
greater than or equal to 27:

SQL> UPDATE CUSTOMERS
SET SALARY = SALARY * 0.25
WHERE AGE IN (SELECT AGE FROM CUSTOMERS BKP
WHERE AGE >= 27);

This would impact two rows and finally CUSTOMERS table would have the following records:

fom e Fo——— Fomm e e e +
| ID | NAME | AGE | ADDRESS | SALARY
fom e Fo——— Fomm - Fomm +
1	Ramesh	35	Ahmedabad	125.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00

5	Hardik	27	Bhopal	2125.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom e — e Fom - fom +

Subqueries with the DELETE Statement:

The subquery can be used in conjunction with the DELETE statement like with any other statements mentioned
above.

The basic syntax is as follows:

DELETE FROM TABLE NAME

[WHERE OPERATOR [VALUE]
(SELECT COLUMN NAME
FROM TABLE NAME)
[WHERE) |

TUTORIALS POINT
Simply Easy Learning

Example:
Assuming, we have CUSTOMERS_BKP table available which is backup of CUSTOMERS table.

Following example deletes records from CUSTOMERS table for all the customers whose AGE is greater than or
equal to 27:

SQL> DELETE FROM CUSTOMERS

WHERE AGE IN (SELECT AGE FROM CUSTOMERS BKP
WHERE AGE > 27);

This would impact two rows and finally CUSTOMERS table would have the following records:

e fo———— fomm pommmmmm——— +
| ID | NAME | AGE | ADDRESS | SALARY
fom to——— tomm tomm +
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
et fom— fommm e pomm e +
TUTORIALS POINT

Simply Easy Learning

SQL - Using Sequences

sequence is a set of integers 1, 2, 3, ... that are generated in order on demand. Sequences are

frequently used in databases because many applications require each row in a table to contain a unique value, and
sequences provide an easy way to generate them.

This chapter describes how to use sequences in MySQL.

Using AUTO_INCREMENT column:

The simplest way in MySQL to use sequences is to define a column as AUTO_INCREMENT and leave rest of the
things to MySQL to take care.

Example:

Try out the following example. This will create table and after that it will insert few rows in this table where it is not
required to give record ID because its auto-incremented by MySQL.

mysgl> CREATE TABLE INSECT
->
-> id INT UNSIGNED NOT NULL AUTO INCREMENT,
-> PRIMARY KEY (id),
-> name VARCHAR (30) NOT NULL, # type of insect
-> date DATE NOT NULL, # date collected
-> origin VARCHAR (30) NOT NULL # where collected

Query OK, 0 rows affected (0.02 sec)
mysqgl> INSERT INTO INSECT (id,name,date,origin) VALUES
-> (NULL, 'housefly', '2001-09-10"', 'kitchen"'),
-> (NULL, 'millipede', '2001-09-10", 'driveway"'),
-> (NULL, 'grasshopper', '2001-09-10"', '"front yard'):;
Query OK, 3 rows affected (0.02 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysgl> SELECT * FROM INSECT ORDER BY id;

fom e tomm tomm +
| id | name | date | origin

B bt T tomm e tomm e +
1	housefly	2001-09-10	kitchen
2	millipede	2001-09-10	driveway
3	grasshopper	2001-09-10	front yard
fom e tomm tomm +

3 rows in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

Obtain AUTO _INCREMENT Values:

LAST_INSERT_ID() is a SQL function, so you can use it from within any client that understands how to issue SQL
statements. Otherwise, PERL and PHP scripts provide exclusive functions to retrieve auto-incremented value of
last record.

PERL Example:

Use the mysqgl_insertid attribute to obtain the AUTO_INCREMENT value generated by a query. This attribute is
accessed through either a database handle or a statement handle, depending on how you issue the query. The
following example references it through the database handle:

$dbh->do ("INSERT INTO INSECT (name,date,origin)
VALUES ('moth','2001-09-14", 'windowsill")");
my $seq = $dbh->{mysqgl insertid};

PHP Example:

After issuing a query that generates an AUTO_INCREMENT value, retrieve the value by calling mysql_insert_id(
):

mysql query ("INSERT INTO INSECT (name,date,origin)
VALUES ('moth', '2001-09-14", 'windowsill')", Sconn id);
$seq = mysql insert id (Sconn id);

Renumbering an Existing Sequence:

There may be a case when you have deleted many records from a table and you want to resequence all the
records. This can be done by using a simple trick but you should be very careful to do so if your table is having
joins with other table.

If you determine that resequencing an AUTO_INCREMENT column is unavoidable, the way to do it is to drop the
column from the table, then add it again. The following example shows how to renumber the id values in the insect
table using this technique:

mysgl> ALTER TABLE INSECT DROP id;

mysgl> ALTER TABLE insect
-> ADD id INT UNSIGNED NOT NULL AUTO_ INCREMENT FIRST,
-> ADD PRIMARY KEY (id);

Starting a Sequence at a Particular Value:

By default, MySQL will start sequence from 1 but you can specify any other number as well at the time of table
creation. Following is the example where MySQL will start sequence from 100.

mysgl> CREATE TABLE INSECT
->
-> id INT UNSIGNED NOT NULL AUTO_INCREMENT = 100,
-> PRIMARY KEY (id),
-> name VARCHAR (30) NOT NULL, # type of insect
-> date DATE NOT NULL, # date collected
-> origin VARCHAR (30) NOT NULL # where collected

TUTORIALS POINT
Simply Easy Learning

Alternatively, you can create the table and then set the initial sequence value with ALTER TABLE.

mysgl> ALTER TABLE t AUTO INCREMENT = 100;

TUTORIALS POINT
Simply Easy Learning

SQL - Handling Duplicates

here may be a situation when you have multiple duplicate records in a table. While fetching such records,

it makes more sense to fetch only unique records instead of fetching duplicate records.

The SQL DISTINCT keyword, which we already have discussed, is used in conjunction with SELECT statement to
eliminate all the duplicate records and fetching only unique records.

Syntax:
The basic syntax of DISTINCT keyword to eliminate duplicate records is as follows:
SELECT DISTINCT columnl, column2,..... columnN

FROM table name
WHERE [condition]

Example:

Consider the CUSTOMERS table having the following records:
to—— et ——— +-———— R S 3
| ID | NAME | AGE | ADDRESS | SALARY |
fom e fom—— fom B +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
fom e fom——— fom e B it +

First, let us see how the following SELECT query returns duplicate salary records:

SQL> SELECT SALARY FROM CUSTOMERS
ORDER BY SALARY;

This would produce the following result where salary 2000 is coming twice which is a duplicate record from the
original table.

TUTORIALS POINT
Simply Easy Learning

Now, let us use DISTINCT keyword with the above SELECT query and see the result:

SQL> SELECT DISTINCT SALARY FROM CUSTOMERS
ORDER BY SALARY;

This would produce the following result where we do not have any duplicate entry:

pomm - +
| SALARY |
fomm - +
| 1500.00 |
| 2000.00 |
| 4500.00 |
| 6500.00 |
| 8500.00 |
| 10000.00 |
Fomm - +
TUTORIALS POINT

Simply Easy Learning

SQL Injection

f you take user input through a webpage and insert it into a SQL database, there's a chance that you have left

yourself wide open for a security issue known as SQL Injection.

This lesson will teach you how to help prevent this from happening and help you secure your scripts and SQL
statements in your server side scripts such as PERL Script.

Injection usually occurs when you ask a user for input, like their name, and instead of a name they give you a SQL
statement that you will unknowingly run on your database.

Never trust user provided data, process this data only after validation; as a rule, this is done by pattern matching.

In the example below, the name is restricted to alphanumerical chars plus underscore and to a length between 8
and 20 chars (modify these rules as needed).

if (preg match("/"\w{8,20}$/", $ GET['username'], S$matches))

Sresult = mysql query ("SELECT * FROM CUSTOMERS
WHERE name=Smatches[0]") ;
}
else
{
echo "user name not accepted";

}
To demonstrate the problem, consider this excerpt:

// supposed input
Sname = "Qadir'; DELETE FROM CUSTOMERS;";
mysql query ("SELECT * FROM CUSTOMSRS WHERE name=' {Sname}'") ;

The function call is supposed to retrieve a record from the CUSTOMERS table where the name column matches
the name specified by the user. Under normal circumstances, $name would only contain alphanumeric characters
and perhaps spaces, such as the string ilia. But here, by appending an entirely new query to $name, the call to the
database turns into disaster: the injected DELETE query removes all records from CUSTOMERS.

Fortunately, if you use MySQL, the mysql_query() function does not permit query stacking or executing multiple
SQL queries in a single function call. If you try to stack queries, the call fails.

TUTORIALS POINT
Simply Easy Learning

However, other PHP database extensions, such as SQLite and PostgreSQL, happily perform stacked queries,
executing all of the queries provided in one string and creating a serious security problem.

Preventing SQL Injection:

You can handle all escape characters smartly in scripting languages like PERL and PHP. The MySQL extension
for PHP provides the function mysql_real_escape_string() to escape input characters that are special to MySQL.

if (get magic quotes gpc())
{
Sname = stripslashes ($name) ;
}
Sname = mysgl real escape string(Sname) ;
mysgl query ("SELECT * FROM CUSTOMERS WHERE name="'{Sname}'") ;

The LIKE Quandary:

To address the LIKE quandary, a custom escaping mechanism must convert user-supplied ‘%’ and ‘_’ characters
to literals. Use addcslashes(), a function that let's you specify a character range to escape.
$sub = addcslashes (mysqgl real escape string("%str"), "% ");
// $sub == \%str_
mysql query ("SELECT * FROM messages
WHERE subject LIKE '{$sub}%'");

TUTORIALS POINT
Simply Easy Learning

SQL Useful Functions

QL has many built-in functions for performing processing on string or numeric data. Following is the list of

all useful SQL built-in functions:

e SQL COUNT Function - The SQL COUNT aggregate function is used to count the number of rows in a
database table.

e SQL MAX Function - The SQL MAX aggregate function allows us to select the highest (maximum) value for a
certain column.

e SQL MIN Function - The SQL MIN aggregate function allows us to select the lowest (minimum) value for a

certain column.

SQL AVG Function - The SQL AVG aggregate function selects the average value for certain table column.

SQL SUM Function - The SQL SUM aggregate function allows selecting the total for a numeric column.

SQL SQRT Functions - This is used to generate a square root of a given number.

SQL RAND Function - This is used to generate a random number using SQL command.

SQL CONCAT Function - This is used to concatenate any string inside any SQL command.

SQL Numeric Functions - Complete list of SQL functions required to manipulate numbers in SQL.

SQL String Functions - Complete list of SQL functions required to manipulate strings in SQL.

SQL COUNT Function

SQL COUNT function is the simplest function and very useful in counting the number of records, which are expected to be
returned by a SELECT statement.

To understand COUNT function, consider an employee_tbl table, which is having the following records:

SQL> SELECT * FROM employee tbl;

e fommmmee fommm——————= fmm————————————————e +
| id | name | work date | daily typing pages |
R Fo—m— = fom e o +
1	John	2007-01-24	250
2	Ram	2007-05-27	220
3	Jack	2007-05-06	170
3	Jack	2007-04-06	100
4	Jill	2007-04-06	220
5	Zara	2007-06-06	300
5	zZara	2007-02-06	350
fo—m——— fomm——— fom e o +
7 rows in set (0.00 sec)

Now suppose based on the above table you want to count total number of rows in this table, then you can do it as follows:

SQL>SELECT COUNT (*) FROM employee tbl ;

TUTORIALS POINT
Simply Easy Learning

1 row in set (0.01 sec)
Similarly, if you want to count the number of records for Zara, then it can be done as follows:

SQL>SELECT COUNT (*) FROM employee tbl
-> WHERE name="Zara";

Fmmmm +
[COUNT (*) |
Fmmmm— +
I 2|
Fommmm e +

1 row in set (0.04 sec)

NOTE: All the SQL queries are case insensitive, so it does not make any difference if you give ZARA or Zara in WHERE
CONDITION.

SQL MAX Function

SQL MAX function is used to find out the record with maximum value among a record set.

To understand MAX function, consider an employee_tbl table, which is having the following records:

SQL> SELECT * FROM employee tbl;

T T fommmmmm——— m————————————— e +
| id | name | work date | daily typing pages |
e e Fomm e o +
1	John	2007-01-24	250
2	Ram	2007-05-27	220
3	Jack	2007-05-06	170
\ 3	Jack	2007-04-06	100
4	Jill	2007-04-06	220
\ 5	Zara	2007-06-06	300
5	Zara	2007-02-06	350
Fo———— e Fom e o +
7 rows in set (0.00 sec)

Now suppose based on the above table you want to fetch maximum value of daily_typing_pages, then you can do
so simply using the following command:

SQL> SELECT MAX (daily typing pages)
-> FROM employee tbl;

R et T +
| MAX (daily typing pages) |
R e e +
| 350 |
o +

You can find all the records with maxmimum value for each name using GROUP BY clause as follows:

SQL> SELECT id, name, MAX(daily typing pages)
-> FROM employee tbl GROUP BY name;

fo—— R B et +
| id | name | MAX(daily typing pages) |
fom— R o +
\ 3 | Jack | 170 |
\ 4 | Jill | 220 |
TUTORIALS POINT

Simply Easy Learning

| 1 | John | 250 |

| 2 | Ram | 220 |

| 5 | Zara | 350 |

pm—— dhmm e e +
(

You can use MIN Function along with MAX function to find out minimum value as well. Try out the following
example:

SQL> SELECT MIN (daily typing pages) least, MAX(daily typing pages) max
-> FROM employee tbl;

fom———— to—— +
| least | max |
o +-————— +
| 100 | 350 |
fom———— B et +

1 row in set (0.01 sec)

SQL MIN Function

SQL MIN function is used to find out the record with minimum value among a record set.

To understand MIN function, consider an employee_tbl table, which is having the following records:

SQL> SELECT * FROM employee tbl;

T T e e +
| id | name | work date | daily typing pages |
e fmmmme fmmmee —————ee T —————ee —————ee +
| 1 | John | 2007-01-24 | 250 |
\ 2 | Ram | 2007-05-27 | 220 |
| 3 | Jack | 2007-05-06 | 170 |
\ 3 | Jack | 2007-04-06 | 100 |
\ 4 | Jill | 2007-04-06 | 220 |
\ 5 | Zara | 2007-06-06 | 300 |
\ 5 | Zara | 2007-02-06 | 350 |
e it fomm - fom - e +
(

Now suppose based on the above table you want to fetch minimum value of daily_typing_pages, then you can do
so simply using the following command:

SQL> SELECT MIN (daily typing pages)
-> FROM employee tbl;

o +
| MIN(daily typing pages) |
e it e +
| 100 |
e e T e e +

1 row in set (0.00 sec)
You can find all the records with minimum value for each name using GROUP BY clause as follows:

SQL> SELECT id, name, work date, MIN(daily typing pages)
-> FROM employee tbl GROUP BY name;

Fom——— fom——— Bt et LT +
| id | name | MIN(daily typing pages) |
fom——— R o +
3	Jack	100
4	Jill	220
1	John	250
TUTORIALS POINT

Simply Easy Learning

You can use MIN Function along with MAX function to find out minimum value as well. Try out the following
example:

SQL> SELECT MIN (daily typing pages) least,
-> MAX (daily typing pages) max
-> FROM employee tbl;

fom———— to—— +
| least | max |
o +-————— +
| 100 | 350 |
fom———— B et +

1 row in set (0.01 sec)

SQL AVG Function

SQL AVG function is used to find out the average of a field in various records.

To understand AVG function, consider an employee_tbl table, which is having the following records:

SQL> SELECT * FROM employee tbl;

T T e e +
| id | name | work date | daily typing pages |
fmmmm=e fmm—==c fmm—ee —————ee T e e +
| 1 | John | 2007-01-24 | 250 |
\ 2 | Ram | 2007-05-27 | 220 |
| 3 | Jack | 2007-05-06 | 170 |
\ 3 | Jack | 2007-04-06 | 100 |
\ 4 | Jill | 2007-04-06 | 220 |
\ 5 | Zara | 2007-06-06 | 300 |
\ 5 | Zara | 2007-02-06 | 350 |
e it fomm - fom - e +
(

Now suppose based on the above table you want to calculate average of all the dialy_typing_pages, then you can
do so by using the following command:

SQL> SELECT AVG (daily typing pages)
-> FROM employee tbl;

o +
| AVG(daily typing pages) |
e it e +
\ 230.0000 |
e e T e e +

1 row in set (0.03 sec)

You can take average of various records set using GROUP BY clause. Following example will take average all the
records related to a single person and you will have average typed pages by every person.

SQL> SELECT name, AVG(daily typing pages)
-> FROM employee tbl GROUP BY name;

o e ettt +
| name | AVG(daily typing pages) |
fom— e +
| Jack | 135.0000 |
| Jill | 220.0000 |
TUTORIALS POINT

Simply Easy Learning

John	250.0000
Ram	220.0000
Zara	325.0000
+o————- R et +

5 rows in set (0.20 sec)

SQL SUM Function

SQL SUM function is used to find out the sum of a field in various records.

To understand SUM function, consider an employee_tbl table, which is having the following records:

SQL> SELECT * FROM employee tbl;

e T e e +
| id | name | work date | daily typing pages |
- t—————- - - +
| 1 | John | 2007-01-24 | 250 |
| 2 | Ram | 2007-05-27 | 220 |
| 3 | Jack | 2007-05-06 | 170 |
| 3 | Jack | 2007-04-06 | 100 |
| 4 | Jill | 2007-04-06 | 220 |
| 5 | Zara | 2007-06-06 | 300 |
| 5 | Zara | 2007-02-06 | 350 |
e fo————= fomm o +
7 rows in set (0.00 sec)

Now suppose based on the above table you want to calculate total of all the dialy_typing_pages, then you can do
so0 by using the following command:

SQL> SELECT SUM(daily typing pages)
-> FROM employee tbl;

R e e +
| SUM(daily typing pages) |
o +
| 1610 |
o +

1 row in set (0.00 sec)

You can take sum of various records set using GROUP BY clause. Following example will sum up all the records
related to a single person and you will have total typed pages by every person.

SQL> SELECT name, SUM(daily typing pages)
-> FROM employee tbl GROUP BY name;

fo— - o +
| name | SUM(daily typing pages) |
fome e e ————e ———————e +
| Jack | 270 |
[Jill | 220 |
John	250
Ram	220
Zara	650
fom - o +

5 rows in set (0.17 sec)

SQL SQRT Function

SQL SQRT function is used to find out the square root of any number. You can Use SELECT statement to find out
squre root of any number as follows:

TUTORIALS POINT
Simply Easy Learning

SQL> select SQRT (16) ;

fomm +
| SORT (16) |
fommmmmm— +
| 4.000000 |
Fomm +

1 row in set (0.00 sec)

You are seeing float value here because internally SQL will manipulate square root in float data type.

You can use SQRT function to find out square root of various records as well. To understand SQRTfunction in
more detail, consider an employee_tbl table, which is having the following records:

SQL> SELECT * FROM employee tbl;

S hommeee e o +
| id | name | work date | daily typing pages |
e o oo e e ————e—e e +
| 1 | John | 2007-01-24 | 250 |
| 2 | Ram | 2007-05-27 | 220 |
\ 3 | Jack | 2007-05-06 | 170 |
\ 3 | Jack | 2007-04-06 | 100 |
| 4 | Jill | 2007-04-06 | 220 |
\ 5 | Zara | 2007-06-06 | 300 |
\ 5 | Zara | 2007-02-06 | 350 |
fom——— R fom e e +
7 rows in set (0.00 sec)

Now suppose based on the above table you want to calculate square root of all the dialy_typing_pages, then you
can do so by using the following command:

SQL> SELECT name, SQRT (daily typing pages)
-> FROM employee tbl;

Fom———— R e e e +
| name | SQRT (daily typing pages) |
- o +
| John | 15.811388 |
| Ram | 14.832397 |
| Jack | 13.038405 |
| Jack | 10.000000 |
[Jill | 14.832397 |
| Zara | 17.320508 |
| Zara | 18.708287 |
fom——— o +

7 rows in set (0.00 sec)

SQL RAND Function

SQL has a RAND function that can be invoked to produce random numbers between 0 and 1:

SQL> SELECT RAND(), RAND(), RAND();

Fomm o omm omm +
| RAND() [RAND() | RAND() |
oo mm Fomm e +
| 0.45464584925645 | 0.1824410643265 | 0.54826780459682 |
oo m e e T oo m +

1 row in set (0.00 sec)

When invoked with an integer argument, RAND() uses that value to seed the random number generator. Each
time you seed the generator with a given value, RAND() will produce a repeatable series of numbers:

TUTORIALS POINT
Simply Easy Learning

SQL> SELECT RAND(1), RAND(), RAND();

o o o +
| RAND (1) | RAND() | RAND() |
Fommm fommmm fommm +
| 0.18109050223705 | 0.75023211143001 | 0.20788908117254 |
o o o +

You can use ORDER BY RAND() to randomize a set of rows or values as follows:

To understand ORDER BY RAND() function, consider an employee_tbl table, which is having the following
records:

SQL> SELECT * FROM employee tbl;

S hmmeeee T S +
| id | name | work date | daily typing pages |
fomm - fom— fom e o +
| 1 | John | 2007-01-24 | 250 |
| 2 | Ram | 2007-05-27 | 220 |
\ 3 | Jack | 2007-05-06 | 170 |
\ 3 | Jack | 2007-04-06 | 100 |
| 4 | Jill | 2007-04-06 | 220 |
\ 5 | Zara | 2007-06-06 | 300 |
\ 5 | Zara | 2007-02-06 | 350 |
fomm - fom— fom e o +
7 rows in set (0.00 sec)
Now, use the following commands:

SQL> SELECT * FROM employee tbl ORDER BY RAND () ;
e T e e +
id | name | work date | daily typing pages
e Fo——— - Fomm o +
| 5 | Zara | 2007-06-06 | 300 |
\ 3 | Jack | 2007-04-06 | 100 |
\ 3 | Jack | 2007-05-06 | 170 |
| 2 | Ram | 2007-05-27 | 220 |
\ 4 | Jill | 2007-04-06 | 220 |
| 5 | Zara | 2007-02-06 | 350 |
| 1 | John | 2007-01-24 | 250 |
fom— fom— fom e o +

7 rows in set (0.01 sec)

SQL> SELECT * FROM employee tbl ORDER BY RAND() ;
T e e o +
| id | name | work date | daily typing pages |
e o e e e ————e—e e +
\ 5 | Zara | 2007-02-06 | 350 |
| 2 | Ram | 2007-05-27 | 220 |
\ 3 | Jack | 2007-04-06 | 100 |
| 1 | John | 2007-01-24 | 250 |
| 4 | Jill | 2007-04-06 | 220 |
\ 3 | Jack | 2007-05-06 | 170 |
\ 5 | Zara | 2007-06-06 | 300 |
fomm - fom— fom - o +
7 rows in set (0.00 sec)

SQL CONCAT Function

TUTORIALS POINT
Simply Easy Learning

SQL CONCAT function is used to concatenate two strings to form a single string. Try out the following example:

SQL> SELECT CONCAT ('FIRST ', 'SECOND');
et +
| CONCAT ('FIRST ', '"SECOND') |
o +
| FIRST SECOND |
o +

1 row in set (0.00 sec)

To understand CONCAT function in more detail, consider an employee_tbl table, which is having the following
records:

SQL> SELECT * FROM employee tbl;

S hommeee e S +
| id | name | work date | daily typing pages |
hmmme e T e —————e e ——————e ———— +
| 1 | John | 2007-01-24 | 250 |
| 2 | Ram | 2007-05-27 | 220 |
\ 3 | Jack | 2007-05-06 | 170 |
\ 3 | Jack | 2007-04-06 | 100 |
| 4 | Jill | 2007-04-06 | 220 |
\ 5 | Zara | 2007-06-06 | 300 |
\ 5 | Zara | 2007-02-06 | 350 |
fom——— R fom e e +
7 rows in set (0.00 sec)

Now suppose based on the above table you want to concatenate all the names employee ID and work_date, then
you can do it using the following command:

SQL> SELECT CONCAT (id, name, work date)
-> FROM employee tbl;

| CONCAT (id, name, work date) |

1John2007-01-24
2Ram2007-05-27

3Jack2007-05-06
3Jack2007-04-06
4J1112007-04-06
5Zara2007-06-06
5Zara2007-02-06

7 rows in set (0.00 sec)

SQL Numeric Function

SQL numeric functions are used primarily for numeric manipulation and/or mathematical calculations. The
following table details the numeric functions:

Name Description
ABS() Returns the absolute value of numeric expression.

Returns the arccosine of numeric expression. Returns NULL if the value is not in the
range -1 to 1.

Returns the arcsine of numeric expression. Returns NULL if value is not in the range -1

ASIN() to 1

TUTORIALS POINT
Simply Easy Learning

ATAN() Returns the arctangent of numeric expression.

ATAN2() Returns the arctangent of the two variables passed to it.

BIT_AND() Returns the bitwise AND all the bits in expression.

BIT_COUNT() Returns the string representation of the binary value passed to it.

BIT_OR() Returns the bitwise OR of all the bits in the passed expression.

CEIL() Returns the smallest integer value that is not less than passed numeric expression

CEILING() Returns the smallest integer value that is not less than passed numeric expression

CONV() Convert numeric expression from one base to another.

cos() zfggégzéz?ncroasé?:nzf. passed numeric expression. The numeric expression should be

COoT Returns the cotangent of passed numeric expression.

DEGREES() Returns numeric expression converted from radians to degrees.

EXP() zf;l:;r;zkt)l:ﬁ base of the natural logarithm (e) raised to the power of passed numeric

FLOOR() Returns the largest integer value that is not greater than passed numeric expression.

FORMAT() Returns a numeric expression rounded to a number of decimal places.

GREATEST() Returns the largest value of the input expressions.

INTERVAL(than oxp2, totum 1 1 expr 15 oS than exp and oo o e

LEAST() Returns the minimum-valued input when given two or more.

LOG() Returns the natural logarithm of the passed numeric expression.

LOG10() Returns the base-10 logarithm of the passed numeric expression.

MOD() Returns the remainder of one expression by diving by another expression.

ocCT() Returns the str[ng representatign of the octal value of the passed numeric expression.
Returns NULL if passed value is NULL.

PI0) Returns the value of pi

POW Returns the value of one expression raised to the power of another expression

POWER Returns the value of one expression raised to the power of another expression

RADIANS() Returns the value of passed expression converted from degrees to radians.

ROUND() E{)e;urr]rdfn r;LéTsfrigei)i(r%r;sgéci)gt ;ounded to an integer. Can be used to round an expression

SIN() Returns the sine of numeric expression given in radians.

SQRT() Returns the non-negative square root of numeric expression.

STD Returns the standard deviation of the numeric expression.

STDDEV() Returns the standard deviation of the numeric expression.

TUTORIALS POINT

Simply Easy Learning

TAN() Returns the tangent of numeric expression expressed in radians.

TRUNCATE Returns numeric ex_p1 truncated to exp2 decimal places. If exp2 is 0, then the result will
have no decimal point.

The ABS() function returns the absolute value of X. Consider the following example:

SQL> SELECT ABS(2) ;

o +
| ABS (2) |
Fo +
| 2 |
e e e e +

1 row in set (0.00 sec)

SQL> SELECT ABS (-2);

o +
| ABS (2) |
e e T e e e e +
| 2 I
o +

1 row in set (0.00 sec)

ACOS(X)

This function returns the arccosine of X. The value of X must range between -1 and 1 or NULL will be returned.
Consider the following example:

SQL> SELECT ACOS (1) ;

e e e e e +
| ACOS (1) |
e +
| 0.000000 |
o +

1 row in set (0.00 sec)

The ASIN() function returns the arcsine of X. The value of X must be in the range of -1 to 1 or NULL is returned.

SQL> SELECT ASIN(1);

e ittt EE e +
| ASIN(1) |
e e e e o D D D +
| 1.5707963267949 |
o 4

1 row in set (0.00 sec)

ATAN(X)

This function returns the arctangent of X.

SQL> SELECT ATAN(1);

TUTORIALS POINT
Simply Easy Learning

1 row in set (0.00 sec)

ATAN2(Y,X)

This function returns the arctangent of the two arguments: X and Y. It is similar to the arctangent of Y/X, except
that the signs of both are used to find the quadrant of the result.

SQL> SELECT ATAN2 (3,6);

e +
| ATAN2 (3,6) |
e +
| 0.46364760900081 |
o +

1 row in set (0.00 sec)

BIT_AND(expression)

The BIT_AND function returns the bitwise AND of all bits in expression. The basic premise is that if two
corresponding bits are the same, then a bitwise AND operation will return 1, while if they are different, a bitwise
AND operation will return 0. The function itself returns a 64-bit integer value. If there are no matches, then it will
return 18446744073709551615. The following example performs the BIT_AND function on the PRICE column
grouped by the MAKER of the car:

SQL> SELECT
MAKER, BIT AND (PRICE) BITS
FROM CARS GROUP BY MAKER

e et +
|MAKER BITS |
et amatatata e e +
| CHRYSLER 512 |
| FORD 12488 |
| HONDA 2144 |
e e e e e +

1 row in set (0.00 sec)

BIT_COUNT(numeric_value)

The BIT_COUNT() function returns the number of bits that are active in numeric_value. The following example
demonstrates using the BIT_COUNT() function to return the number of active bits for a range of numbers:

SQL> SELECT

BIT COUNT (2) AS TWO,
BIT COUNT (4) AS FOUR,
BIT COUNT (7) AS SEVEN

tmmm—m T Fem————e +

| TWO | FOUR | SEVEN |

+o——— Fom———— fom———— +

\ 1| 1| 3

+-——— +o————- fom +

1 row in set (0.00 sec)

TUTORIALS POINT

Simply Easy Learning

BIT_OR(expression)

The BIT_OR() function returns the bitwise OR of all the bits in expression. The basic premise of the bitwise OR
function is that it returns 0 if the corresponding bits match and 1 if they do not. The function returns a 64-bit integer,
and if there are no matching rows, then it returns 0. The following example performs the BIT_OR() function on the
PRICE column of the CARS table, grouped by the MAKER:

SQL> SELECT
MAKER, BIT OR(PRICE) BITS
FROM CARS GROUP BY MAKER

e e e e e +
|MAKER BITS |
ettt +
| CHRYSLER 62293 |
| FORD 16127 |
| HONDA 32766 |
o +

1 row in set (0.00 sec)
CEIL(X)
CEILING(X)

These functions return the smallest integer value that is not smaller than X. Consider the following example:

SQL> SELECT CEILING(3.46);

e +
| CEILING (3.46) |
e atatata et L +
| 4 |
e +

1 row in set (0.00 sec)

SQL> SELECT CEIL(-6.43);

ettt e e T +
CEIL(-6.43)

e e e e e e +

| -6 |

ettt e +

1 row in set (0.00 sec)

CONV(N,from_base,to_base)

The purpose of the CONV() function is to convert numbers between different number bases. The function returns a
string of the value N converted from from_base to to_base. The minimum base value is 2 and the maximum is 36.
If any of the arguments are NULL, then the function returns NULL. Consider the following example, which converts
the number 5 from base 16 to base 2:

SQL> SELECT CONV (5,16,2) ;

o +
| CONV(5,16,2) [
o +
| 101 |
o +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

This function returns the cosine of X. The value of X is given in radians.

SQL>SELECT COS (90) ;

e et ettt +
COS (90) |

o +
-0.44807361612917

e s s e e s e s s e s s e s s s S e S S s s s e s s e s e s s s e s == +
1 row in set (0.00 sec)

COT(X)

This function returns the cotangent of X. Consider the following example:

SQL>SELECT COT (1) ;
e et et et e +
| COT (1) |
et e e e L T 1
| 0.64209261593433 |
- ———————— +
1 row in set (0.00 sec)

DEGREES(X)

This function returns the value of X converted from radians to degrees.
SQL>SELECT DEGREES (PI());
e ——— 3
| DEGREES (PI()) |
e et it T T e +
| 180.000000 |
e et et e et LT +

1 row in set (0.00 sec)

This function returns the value of e (the base of the natural logarithm) raised to the power of X.

SQL>SELECT EXP (3) ;

o +
EXP (3) |
e ettt T e e +
20.085537 |
B it +
1 row in set (0.00 sec)

This function returns the largest integer value that is not greater than X.
SQL>SELECT FLOOR(7.55) ;
o +
| FLOOR(7.55) I
o +
TUTORIALS POINT

Simply Easy Learning

1 row in set (0.00 sec)

FORMAT(X,D)

The FORMAT() function is used to format the number X in the following format: ### ### ##### truncated to D
decimal places. The following example demonstrates the use and output of the FORMAT() function:

SQL>SELECT FORMAT (423423234.65434453,2) ;

1 row in set (0.00 sec)

GREATEST(n1,n2,n3,..........)

The GREATEST() function returns the greatest value in the set of input parameters (n1, n2, n3, a nd so on). The
following example uses the GREATEST() function to return the largest number from a set of numeric values:

SQL>SELECT GREATEST (3,5,1,8,33,99,34,55,67,43);

et et +
GREATEST (3,5,1,8,33,99,34,55,67,43)

e +
99 |

e +

1 row in set (0.00 sec)

INTERVAL(N,N1,N2,N3,..........)

The INTERVAL() function compares the value of N to the value list (N1, N2, N3, and so on). The function returns 0
if N< N1, 1if N<N2, 2 if N<N3, and so on. It will return -1 if N is NULL. The value list must be in the form N1 <

N2 < N3 in order to work properly. The following code is a simple example of how the INTERVAL() function works:

SQL>SELECT INTERVAL(6,1,2,3,4,5,6,7,8,9,10);

o +
| INTERVAL(6,1,2,3,4,5,6,7,8,9,10) |
e +
| 6 |
T +

1 row in set (0.00 sec)

INTERVAL(N,N1,N2,N3,..........)

The INTERVALY() function compares the value of N to the value list (N1, N2, N3, and so on). The function returns 0
if N< N1, 1if N<N2, 2if N<N3, and so on. It will return -1 if N is NULL. The value list must be in the form N1 <
N2 < N3 in order to work properly. The following code is a simple example of how the INTERVAL() function works:

SQL>SELECT INTERVAL(6,1,2,3,4,5,6,7,8,9,10);

Tt Tttt +
| INTERVAL(6,1,2,3,4,5,6,7,8,9,10) |
o +
| 6 |
o +

TUTORIALS POINT
Simply Easy Learning

1 row in set (0.00 sec)

Remember that 6 is the zero-based index in the value list of the first value that was greater than N. In our case, 7
was the offending value and is located in the sixth index slot.

LEAST(N1,N2,N3,N4,......)

The LEAST() function is the opposite of the GREATEST() function. Its purpose is to return the least-valued item
from the value list (N1, N2, N3, and so on). The following example shows the proper usage and output for the
LEAST() function:

SQL>SELECT LEAST(3,5,1,8,33,99,34,55,67,43);

o +
LEAST (3,5,1,8,33,99,34,55,67,43)

o +

| 1 |

e +

1 row in set (0.00 sec)
LOG(X)
LOG(B,X)

The single argument version of the function will return the natural logarithm of X. If it is called with two arguments,
it returns the logarithm of X for an arbitrary base B. Consider the following example:

SQL>SELECT LOG (45) ;

e Tttt et e e +
| LOG (45) |
e et ittt +
| 3.806662 |
ittt it +

1 row in set (0.00 sec)

SQL>SELECT LOG(2,65536) ;

e e e e e +
| LOG(2,65536)

e e +
| 16.000000 |
it e e e e +

1 row in set (0.00 sec)

LOG10(X)

This function returns the base-10 logarithm of X.

SQL>SELECT LOG10 (100) ;

e e e e +
| LOG10(100) |
o +
2.000000
et i +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

MOD(N, M)

This function returns the remainder of N divided by M. Consider the following example:

SQL>SELECT MOD (29, 3) ;
et +
| MOD (29, 3) |
o +
2 |
e +

1 row in set (0.00 sec)

OCT(N)

The OCT() function returns the string representation of the octal number N. This is equivalent to using
CONV(N,10,8).

SQL>SELECT OCT (12) ;

e +
OCT (12) |

i e +
14 |

it e e T e +

1 row in set (0.00 sec)

PI()

This function simply returns the value of pi. SQL internally stores the full double-precision value of pi.

SQL>SELECT PI();

e e e e e e +
| PI() |
ettt e e T +
| 3.141593 |
e e e e e e +

1 row in set (0.00 sec)
POW(X.Y)
POWER(X)Y)

These two functions return the value of X raised to the power of Y.

SQL> SELECT POWER(3,3);
- +
POWER (3, 3) |
T +
27 |
o +

1 row in set (0.00 sec)

RADIANS(X)

This function returns the value of X, converted from degrees to radians.

TUTORIALS POINT
Simply Easy Learning

SQL>SELECT RADIANS (90) ;

o +
| RADIANS (90)

o +
[1.570796 |
o +

1 row in set (0.00 sec)

ROUND(X)
ROUND(X,D)

This function returns X rounded to the nearest integer. If a second argument, D, is supplied, then the function
returns X rounded to D decimal places. D must be positive or all digits to the right of the decimal point will be
removed. Consider the following example:

SQL>SELECT ROUND (5.693893) ;

e e e e +
| ROUND (5.693893) |
o +
| 6 |
et +

1 row in set (0.00 sec)

SQL>SELECT ROUND (5.693893,2) ;

e e et e e +
| ROUND(5.693893, 2)

et +
| 5.69 |
et +

1 row in set (0.00 sec)

SIGN(X)

This function returns the sign of X (negative, zero, or positive) as -1, 0, or 1.

SQL>SELECT SIGN(-4.65);

oo +
| SIGN(-4.65) |
e e ettt e T +
| -1 |
ettt +

1 row in set (0.00 sec)

SQL>SELECT SIGN (0) ;

o +
| SIGN(O) |
o +
| 0 |
e et +

1 row in set (0.00 sec)

SQL>SELECT SIGN (4.65);

ettt +
| SIGN(4.65) |
o +
I 1 I
e e i e +
TUTORIALS POINT

Simply Easy Learning

1 row in set (0.00 sec)

This function returns the sine of X. Consider the following example:

SQL>SELECT SIN(90) ;

e et +
| SIN(90) |
o +
| 0.893997 |
it +

1 row in set (0.00 sec)

This function returns the non-negative square root of X. Consider the following example:

SQL>SELECT SQRT (49) ;

et +
| SQRT (49) |
e e e e e +
|7 I
et +

1 row in set (0.00 sec)
STD(expression)
STDDEV(expression)

The STD() function is used to return the standard deviation of expression. This is equivalent to taking the square
root of the VARIANCE() of expression. The following example computes the standard deviation of the PRICE
column in our CARS table:

SQL>SELECT STD (PRICE) STD DEVIATION FROM CARS;

e +
| STD DEVIATION |
o +
| 7650.2146 |
ettt +

1 row in set (0.00 sec)

This function returns the tangent of the argument X, which is expressed in radians.

SQL>SELECT TAN (45) ;

ettt et e e +

TAN (45) |
et +
| 1.619775 |
o +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

TRUNCATE(X,D)

This function is used to return the value of X truncated to D number of decimal places. If D is 0, then the decimal
point is removed. If D is negative, then D number of values in the integer part of the value is truncated. Consider
the following example:

SQL>SELECT TRUNCATE (7.536432,2) ;

o +
| TRUNCATE (7.536432,2)

et T +
| 7.53 |
oo +

1 row in set (0.00 sec)

SQL String Function

SQL string functions are used primarily for string manipulation. The following table details the important string
functions:

Name Description

ASCII() Returns numeric value of left-most character
BIN() Returns a string representation of the argument
BIT_LENGTH() Returns length of argument in bits

CHAR LENGTH() Returns number of characters in argument
CHAR() Returns the character for each integer passed
CHARACTER LENGTH() A synonym for CHAR_LENGTH()

CONCAT WS() Returns concatenate with separator

CONCAT() Returns concatenated string

CONV() Converts numbers between different number bases
ELT Returns string at index number

Returns a string such that for every bit set in the value bits, you get an on
string and for every unset bit, you get an off string

EXPORT_SET()

FIELD() Returns the index (position) of the first argument in the subsequent arguments
FIND IN_SET() Returns the index position of the first argument within the second argument
FORMAT() Returns a number formatted to specified number of decimal places
HEX() Returns a string representation of a hex value

Inserts a substring at the specified position up to the specified number of
INSERT characters
INSTR() Returns the index of the first occurrence of substring
LCASE() Synonym for LOWER()
LEFT() Returns the leftmost number of characters as specified
TUTORIALS POINT

Simply Easy Learning

LENGTH()
LOAD _FILE()

LOCATE()
LOWER

PAD
TRIM

i

MAKE_SET()

<

ID

o
O
_|

OCTET _LENGTH()

o

RD

POSITION()
UOTE

EPEAT

REPLACE

T

REVERSE

SOUNDEX()
SOUNDS LIKE
SPACE()
STRCMP()

SUBSTRING _INDEX()

SUBSTRING(), SUBSTR()

TRIM(

UCASE()
UNHEX()
UPPER()

Returns the length of a string in bytes

Loads the named file

Returns the position of the first occurrence of substring

Returns the argument in lowercase

Returns the string argument, left-padded with the specified string
Removes leading spaces

Returns a set of comma-separated strings that have the corresponding bit in
bits set

Returns a substring starting from the specified position
Returns a string representation of the octal argument
A synonym for LENGTH()

If the leftmost character of the argument is a multi-byte character, returns the
code for that character

A synonym for LOCATE()

Escapes the argument for use in an SQL statement
Pattern matching using regular expressions
Repeat a string the specified number of times
Replaces occurrences of a specified string
Reverses the characters in a string

Returns the specified rightmost number of characters
Appends string the specified number of times
Removes trailing spaces

Returns a soundex string

Compares sounds

Returns a string of the specified number of spaces
Compares two strings

Returns a substring from a string before the specified number of occurrences
of the delimiter

Returns the substring as specified

Removes leading and trailing spaces

Synonym for UPPER()

Converts each pair of hexadecimal digits to a character

Converts to uppercase

TUTORIALS POINT
Simply Easy Learning

ASClI(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty string. Returns
NULL if stris NULL. ASCII() works for characters with numeric values from 0 to 255.

SQL> SELECT ASCII('2');

o +
| ASCII('2") |
e e e e e +
| 50 |
o +

1 row in set (0.00 sec)

SQL> SELECT ASCII('dx');

e +
| ASCII('dx") |
e e e e e e +

100 |
e +

1 row in set (0.00 sec)

BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number. This is equivalent
to CONV(N,10,2). Returns NULL if N is NULL.

SQL> SELECT BIN(12);

e e ettt e T +
| BIN(12) |
o o +
| 1100 |
o +

1 row in set (0.00 sec)

BIT_LENGTH(str)

Returns the length of the string str in bits.

SQL> SELECT BIT LENGTH ('text');

o +
| BIT LENGTH('text") |
B +
| 32 |
- +

1 row in set (0.00 sec)

CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string consisting of the characters given by the
code values of those integers. NULL values are skipped.

SQL> SELECT CHAR(77,121,83,81,'76"');

o +
| CHAR(77,121,83,81,'76") |
ettt e +
| SQL \
e e e e +
TUTORIALS POINT

Simply Easy Learning

1 row in set (0.00 sec)

CHAR_LENGTH(str)

Returns the length of the string str measured in characters. A multi-byte character counts as a single character.
This means that for a string containing five two-byte characters, LENGTH() returns 10, whereas CHAR_LENGTH()

returns 5.

SQL> SELECT CHAR LENGTH ("text");

e +
| CHAR LENGTH ("text") |
- +

4 |
e +

1 row in set (0.00 sec)

CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have one or more arguments. If all
arguments are non-binary strings, the result is a non-binary string. If the arguments include any binary strings, the
result is a binary string. A numeric argument is converted to its equivalent binary string form; if you want to avoid
that, you can use an explicit type cast, as in this example:

SQL> SELECT CONCAT ('My', 'S', 'QL');

o +
| CONCAT('My', 'S', 'QOL') [
o +
| SQL |
o +

1 row in set (0.00 sec)

CONCAT_WS(separator,strl,str2,...)

CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The first argument is
the separator for the rest of the arguments. The separator is added between the strings to be concatenated. The
separator can be a string, as can the rest of the arguments. If the separator is NULL, the result is NULL.

SQL> SELECT CONCAT WS(',',6 'First name', 'Last Name');

e ket e et ke e e +
| CONCAT_WS(',','First name', 'Last Name') |
e et e +

First name, Last Name

1 row in set (0.00 sec)

CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the number N, converted
from base from_base to to_base. Returns NULL if any argument is NULL. The argument N is interpreted as an
integer, but may be specified as an integer or a string. The minimum base is 2 and the maximum base is 36. If
to_base is a negative number, N is regarded as a signed number. Otherwise, N is treated as unsigned. CONV()

works with 64-bit precision.

TUTORIALS POINT
Simply Easy Learning

SQL> SELECT CONV('a',16,2);

o +
| CONV('a',16,2) |
e +

1010 [
o +

1 row in set (0.00 sec)

ELT(N,str1,str2,str3,...)

Returns str1 if N = 1, str2 if N = 2, and so on. Returns NULL if N is less than 1 or greater than the number of
arguments. ELT() is the complement of FIELD().

SQL> SELECT ELT(l1, 'ej', 'Heja' 'hej’ 'foo');

o +

| ELT (1, 'ej', 'Heja' 'hej', 'foo') |

B e e e +
ej |

R et +

1 row in set (0.00 sec)

EXPORT _SET(bits,on,off[,separator[,number_of bits]])

Returns a string such that for every bit set in the value bits, you get an on string and for every bit not set in the
value, you get an off string. Bits in bits are examined from right to left (from low-order to high-order bits). Strings
are added to the result from left to right, separated by the separator string (the default being the comma character
.,.). The number of bits examined is given by number_of_bits (defaults to 64).

SQL> SELECT EXPORT SET(5,'Y','N',',', 4);
T T +
| EXPORT SET(5,'Y','N',', ', 4) [
o +
| Y,N,Y,N |
R et atatatat bt e +

1 row in set (0.00 sec)

FIELD(str,str1,str2,str3,...)

Returns the index (position starting with 1) of str in the str1, str2, str3, ... list. Returns 0 if str is not found.

SQL> SELECT FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo');

e +

| FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo')

e +
2 |

e +

1 row in set (0.00 sec)

FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of N substrings.

e +

SELECT FIND IN SET('b','a,b,c,d") |
o +
| 2 |
et it EE e +
TUTORIALS POINT

Simply Easy Learning

1 row in set (0.00 sec)

FORMAT(X,D)

Formats the number X to a format like ‘# ### ###.##', rounded to D decimal places, and returns the result as a
string. If D is 0, the result has no decimal point or fractional part.

SQL> SELECT FORMAT (12332.123456, 4);

e e e e e e +
| FORMAT (12332.123456, 4) |
F +
| 12,332.1235 |
e it e +

1 row in set (0.00 sec)

HEX(N_or_S)

If N_or_S is a number, returns a string representation of the hexadecimal value of N, where N is a longlong
(BIGINT) number. This is equivalent to CONV(N,10,16).

If N_or_S is a string, returns a hexadecimal string representation of N_or_S where each character in N_or_S is
converted to two hexadecimal digits.

SQL> SELECT HEX (255) ;

+ ___
| HEX (255) |
e +
| FF |
e +
1 row in set (0.00 sec)

SQL> SELECT 0x616263;

e +
| 0x616263 |
e +
| abc |
e +

1 row in set (0.00 sec)

INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long replaced by the string
newstr. Returns the original string if pos is not within the length of the string. Replaces the rest of the string from
position pos if len is not within the length of the rest of the string. Returns NULL if any argument is NULL.

e +
| INSERT ('Quadratic', 3, 4, 'What') |
o +
| QuWhattic |
e +

1 row in set (0.00 sec)

INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same as the two-argument
form of LOCATE(), except that the order of the arguments is reversed.

TUTORIALS POINT
Simply Easy Learning

R it et e +
| INSTR('foobarbar', 'bar') |
o +
| 4 |
e et e matat +

1 row in set (0.00 sec)

LCASE(str)

LCASE() is a synonym for LOWER().

LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any argument is NULL.

SQL> SELECT LEFT ('foobarbar', 5);

it +
| LEFT ('foobarbar', 5) |
o +
| fooba |
e +

1 row in set (0.00 sec)

LENGTH(str)

Returns the length of the string str measured in bytes. A multi-byte character counts as multiple bytes. This means
that for a string containing five two-byte characters, LENGTHY() returns 10, whereas CHAR_LENGTH() returns 5.

SQL> SELECT LENGTH ('text');

e et +
LENGTH ('text")

ettt +
4 |

e +

1 row in set (0.00 sec)

LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. To use this function, the file must be located on the server
host, you must specify the full pathname to the file, and you must have the FILE privilege. The file must be
readable by all and its size less than max_allowed_packet bytes.

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied, the function
returns NULL.

As of SQL 5.0.19, the character_set_filesystem system variable controls interpretation of filenames that are given
as literal strings.

SQL> UPDATE table test
-> SET blob col=LOAD FILE ('/tmp/picture')
-> WHERE id=1;

TUTORIALS POINT
Simply Easy Learning

LOCATE(substr,str), LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str. The second syntax
returns the position of the first occurrence of substring substr in string str, starting at position pos. Returns O if

substr is not in str.

SQL> SELECT LOCATE ('bar', 'foobarbar'):;

e +
LOCATE ('bar', 'foobarbar')

o +

| 4 |

e +

1 row in set (0.00 sec)

LOWER(str)

Returns the string str with all characters changed to lowercase according to the current character set mapping.

SQL> SELECT LOWER ('QUADRATICALLY') ;

o +

| LOWER ('QUADRATICALLY')

o +
quadratically

o +

1 row in set (0.00 sec)

LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If str is longer than len, the
return value is shortened to len characters.

SQL> SELECT LPAD('hi',4,'??'");

+
LPAD('hi',4,'?2?") |

o +
| 27?hi |
e s s s e e e e s s s s s e s s s S e S s S ss s s s s e s s s s e s == s
1 row in set (0.00 sec)

LTRIM(str)

Returns the string str with leading space characters removed.

SQL> SELECT LTRIM(' barbar');
o +
| LTRIM(' Dbarbar') |
o +
| barbar |
e 3

1 row in set (0.00 sec)

MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by .,. characters) consisting of the strings that have
the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so on. NULL values in str1, str2, ... are

not appended to the result.

TUTORIALS POINT
Simply Easy Learning

e et ettt ettt e +
| MAKE SET(1,'a','b','c") |
e ——— +
| a |
o +

1 row in set (0.00 sec)

MID(str,pos,len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This is equivalent
to CONV(N,10,8). Returns NULL if N is NULL.

SQL> SELECT OCT (12) ;

e e +
| OCT (12) |
e et e e +

14 |
ettt L e +

1 row in set (0.00 sec)

OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

ORD(str)

If the leftmost character of the string str is a multi-byte character, returns the code for that character, calculated
from the numeric values of its constituent bytes using this formula:

(1st byte code)

+ (2nd byte code . 256)
+ (3rd byte code . 2562)
If the leftmost character is not a multi-byte character, ORD() returns the same value as the ASCII() function.

SQL> SELECT ORD('2"');

e e e e +
| ORD('2") |
e e e e +

50 |
o +

1 row in set (0.00 sec)

POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

TUTORIALS POINT
Simply Easy Learning

QUOTE(str)

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL statement. The
string is returned enclosed by single quotes and with each instance of single quote (" * *), backslash ('\), ASCII
NUL, and Control-Z preceded by a backslash. If the argument is NULL, the return value is the word 'NULL* without
enclosing single quotes.

SQL> SELECT QUOTE ('Don\'t!"'");

e +
| QUOTE ('Don\'t!") |
T T +
| 'Don\'t!' |
e +

1 row in set (0.00 sec)

NOTE: Please check if your installation has any bug with this function then don't use this function.

expr REGEXP pattern

This function performs a pattern match of expr against pattern. Returns 1 if expr matches pat; otherwise it returns
0. If either expr or pat is NULL, the result is NULL. REGEXP is not case sensitive, except when used with binary
strings.

SQL> SELECT 'ABCDEFE' REGEXP 'A%CS%%';

e +
| 'ABCDEF' REGEXP 'A%C%%' |
i e e e I

0 |
e +

1 row in set (0.00 sec)
Another example is:

SQL> SELECT 'ABCDE' REGEXP '.*';

e e e e e +
'ABCDE' REGEXP '.*'
o +
| 1 |
et +

1 row in set (0.00 sec)
Let's see one more example:

SQL> SELECT 'new*\n*line' REGEXP 'new*.*line';

e +
| '"new*\n*line' REGEXP 'new*.*line'

e +
| 1 |
e +

1 row in set (0.00 sec)

REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count is less than 1, returns an empty string.
Returns NULL if str or count are NULL.

SQL> SELECT REPEAT ('SQL', 3);

TUTORIALS POINT
Simply Easy Learning

REPEAT ('SQL', 3)

1 row in set (0.00 sec)

REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string to_str. REPLACE() performs
a case-sensitive match when searching for from_str.

SQL> SELECT REPLACE ('www.mysgl.com', 'w', 'Ww');
f—— 3
| REPLACE ('www.mysgl.com', 'w', 'Ww') |
o +
WwiWwiWw . mysql .com
o +
1 row in set (0.00 sec)
REVERSE(str)
Returns the string str with the order of the characters reversed.
SQL> SELECT REVERSE ('abcd');
e et +
REVERSE ('abcd') I
ettt +
| dcba |
e et +

1 row in set (0.00 sec)

RIGHT(str,len)

Returns the rightmost len characters from the string str, or NULL if any argument is NULL.

SQL> SELECT RIGHT ('foobarbar', 4);

e +

| RIGHT ('foobarbar', 4)

R et et +
rbar |

Rt et e +

1 row in set (0.00 sec)

RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If str is longer than len, the
return value is shortened to len characters.

SQL> SELECT RPAD('hi',5,'?');

e +
RPAD('hi',5,'?")

e et +

| hi??? |

o +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

RTRIM(str)

Returns the string str with trailing space characters removed.

SQL> SELECT RTRIM('barbar V) g

o +
| RTRIM('barbar 7 I
o +
| barbar |
o 3

1 row in set (0.00 sec)

SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have identical soundex strings.
A standard soundex string is four characters long, but the SOUNDEX() function returns an arbitrarily long string.
You can use SUBSTRING() on the result to get a standard soundex string. All non-alphabetic characters in str are
ignored. All international alphabetic characters outside the A-Z range are treated as vowels.

SQL> SELECT SOUNDEX ('Hello'");

e Tt it +
| SOUNDEX ('Hello'") |
o +
| H400 |
T e ittt e +

1 row in set (0.00 sec)

exprl SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).

SPACE(N)

Returns a string consisting of N space characters.

SQL> SELECT SPACE (6) ;

o +
| SELECT SPACE (6) |
Tttt +
[! I
et +

1 row in set (0.00 sec)

STRCMP(str1, str2)

Compares two strings and returns 0 if both strings are equal, it returns -1 if the first argument is smaller than the
second according to the current sort order otherwise it returns 1.

SQL> SELECT STRCMP ('MOHD', 'MOHD') ;

e et e e +
| STRCMP ('MOHD', 'MOHD')

F +
| 0 |
e et e e +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

Another example is:

SQL> SELECT STRCMP ('AMOHD', 'MOHD');

et +
| STRCMP ('AMOHD', 'MOHD'") |
e et e +
| -1 |
o +

1 row in set (0.00 sec)

Let's see one more example:

SQL> SELECT STRCMP ('MOHD', 'AMOHD');

T e +
| STRCMP ('MOHD', 'AMOHD'") |
e +
| 1 |
et +

1 row in set (0.00 sec)

SUBSTRING(str,pos)
SUBSTRING(str FROM pos)
SUBSTRING(str,pos,len)
SUBSTRING(str FROM pos FOR len)

The forms without a len argument return a substring from string str starting at position pos. The forms with a len
argument return a substring len characters long from string str, starting at position pos. The forms that use FROM
are standard SQL syntax. It is also possible to use a negative value for pos. In this case, the beginning of the
substring is pos characters from the end of the string, rather than the beginning. A negative value may be used for
pos in any of the forms of this function.

SQL> SELECT SUBSTRING ('Quadratically',5):

e +
| SSUBSTRING ('Quadratically',5) |
e +
| ratically |
e +

1 row in set (0.00 sec)

SQL> SELECT SUBSTRING ('foobarbar' FROM 4) ;

e +
| SUBSTRING ('foobarbar' FROM 4) |
B it ettt e L e +
| barbar |
ittt it +

1 row in set (0.00 sec)

SQL> SELECT SUBSTRING ('Quadratically',5,6);

e +
SUBSTRING ('Quadratically', 5, 6)
T T +
| ratica |
e st +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If count is positive, everything
to the left of the final delimiter (counting from the left) is returned. If count is negative, everything to the right of the
final delimiter (counting from the right) is returned. SUBSTRING_INDEX() performs a case-sensitive match when
searching for delim.

SQL> SELECT SUBSTRING INDEX('www.mysqgl.com', '.', 2);

B e et e it +
| SUBSTRING INDEX ('www.mysqgl.com', '.', 2) |
R e ittt e e +
| www.mysqgl |
R it ittt e e e +

1 row in set (0.00 sec)

TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str)
TRIM([remstr FROM] str)

Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH, LEADING, or
TRAILING is given, BOTH is assumed. remstr is optional and, if not specified, spaces are removed.

SQL> SELECT TRIM (' bar ") g

B T e +
| TRIM(' Dbar ') |
e +
| bar |
BT T +

1 row in set (0.00 sec)

SQL> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');

o +
| TRIM(LEADING 'x' FROM 'xxxbarxxx') |
B it ittt e e +
| barxxx |
R et e e +

1 row in set (0.00 sec)

SQL> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');

e +
| TRIM(BOTH 'x' FROM 'xxxbarxxx') |
Tttt +
| bar |
e +

1 row in set (0.00 sec)

SQL> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');

o +
| TRIM(TRAILING 'xyz' FROM 'barxxyz') |
R e Rt it +
| barx |
R it ittt e e e +

1 row in set (0.00 sec)

UCASE(str)

UCASE() is a synonym for UPPER().

TUTORIALS POINT
Simply Easy Learning

UNHEX(str)

Performs the inverse operation of HEX(str). That is, it interprets each pair of hexadecimal digits in the argument as
a number and converts it to the character represented by the number. The resulting characters are returned as a

binary string.

SQL> SELECT UNHEX ('4D7953514C");

o +
| UNHEX ('4D7953514C")
et T +
| SQL \
et et T T +

1 row in set (0.00 sec)

The characters in the argument string must be legal hexadecimal digits: '0' .. '9', 'A' .. 'F', 'a' .. 'f'. If UNHEX()
encounters any non-hexadecimal digits in the argument, it returns NULL.

UPPER(str)

Returns the string str with all characters changed to uppercase according to the current character set mapping.

SQL> SELECT UPPER('Allah-hus-samad') ;

o +
| UPPER('Allah-hus-samad') |
e e e et T +
| ALLAH-HUS-SAMAD |
o +

TUTORIALS POINT
Simply Easy Learning

