Leveling Device

leveling device is an instrument used in surveying to measure or establish a horizontal plane or line. It plays a crucial role in determining the elevation of points, leveling ground, and ensuring the accuracy of construction projects.

Main Parts of a Surveying Level

- 1. Telescope
 - **Objective Lens**: Focuses on distant objects to bring them into the field of view.
 - **Eyepiece**: Allows the user to view the magnified image of the object.
 - **Crosshairs**: Helps in aligning the level accurately with the target point.

2. Leveling Screws (Foot Screws)

- Used to adjust and level the instrument by tilting its base plate.
- 3. Base Plate (Tribrach)
 - Supports the level and provides a stable connection to the tripod.
- 4. Circular Level (Bubble Level)
 - Ensures the instrument is horizontally level.

5. Tripod Mounting Head

- A platform to secure the level to the tripod.
- 6. Vertical Spindle
 - Allows the instrument to rotate horizontally during observation.
- 7. Focusing Knob
 - Adjusts the focus of the telescope to ensure the target is sharp and clear.

8. Horizontal Tangent Screw

• Permits fine adjustments in the horizontal direction for precise alignment with the target.

9. Line of Sight/Line of Collimation

• The imaginary straight line through the crosshairs to the object being sighted.

10. Plumb Bob or Optical Plummet

• Ensures that the instrument is set directly above a specific ground point (e.g., a benchmark).

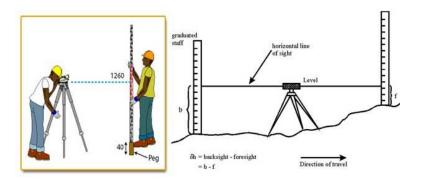
11. Mirror (in some levels)

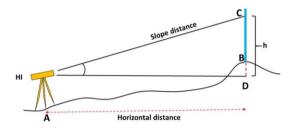
• Assists in viewing the bubble level when it is not visible directly.

12. Compensator (in Automatic Levels)

*****level measurement staff** (or leveling rod) <u>is an essential tool in surveying and leveling</u> operations. It is a graduated pole or rod used to measure vertical distances, typically in conjunction with a leveling instrument. The staff provides a reference point for determining the relative elevation of a surveyed point.

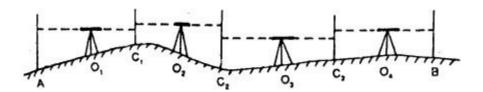
Uses of Leveling Staff


- Leveling Surveys: To measure the difference in elevation between points.
- Height Measurement: Used to determine the height of points above a reference plane.
- **Digital Leveling**: Paired with digital levels for precise readings

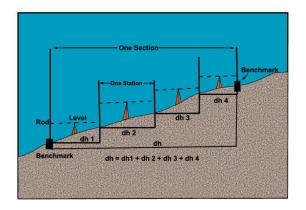

level survey process involves determining the relative heights or elevations of points on the Earth's surface.

Types of Leveling

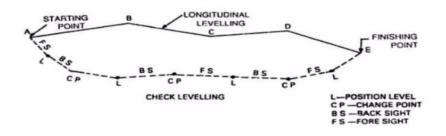
- 1. Direct Leveling (Spirit Leveling)
 - **Definition**: The most common and accurate method of leveling, where a leveling instrument is used to measure vertical distances directly.
 - Methods:
 - 1) **Simple Leveling**: Used when the points to be leveled are close to each other and on the same line of sight.
 - 2) **Differential Leveling**: Used when points are at different elevations or separated by obstacles.
 - 3) **Profile Leveling**: Used to determine the elevations along a line, such as for a road or canal alignment.
 - 4) **Cross-Section Leveling**: Similar to profile leveling, but involves measuring elevations perpendicular to a central line.
 - 5) **Reciprocal Leveling**: Used to eliminate errors caused by instrument imperfections or refraction, especially over long distances.



- 2. Indirect Leveling
 - **Definition**: Heights are determined indirectly using trigonometric principles or GPS.
 - Examples: Trigonometric leveling, barometric leveling, and GPS leveling.


3. Fly Leveling

• A rapid method of leveling used to establish temporary benchmarks or check previous levels.


4. Precise Leveling

• A highly accurate method used in large-scale projects such as railway construction or dam surveys.

5. Check Leveling

• A method used to verify the accuracy of previous leveling results.

Here are the definitions of key terms in leveling:

• Level Line

A line that is everywhere perpendicular to the direction of gravity. It is a curved line following the Earth's surface.

• Level Surface

A continuous surface that is perpendicular to the direction of gravity at every point, such as the surface of a calm lake.

• Horizontal Line

A straight line tangent to the level line at a point. It is perpendicular to the direction of gravity at that point.

• Datum

A reference surface or level from which elevations are measured. Common datums include mean sea level or an arbitrary point.

• Mean Sea Level (MSL)

The average level of the sea over a long period, used as a standard for measuring elevations.

• Elevation

The vertical distance of a point above or below the datum.

• Benchmark (BM)

A fixed reference point of known elevation. Benchmarks are used as starting points in leveling.

Characteristics of Benchmarks

- 1) **Stability**: Fixed to minimize shifts over time.
- 2) Accessibility: Placed in visible, easily reachable locations.
- 3) **Durability**: Built to withstand environmental conditions.

• Line of Sight

The straight line extending from the instrument to the leveling staff, through the crosshairs.

• Height of Instrument (HI)

The elevation of the line of sight of the leveling instrument, measured from the datum or a benchmark.

• Elevation Difference

The vertical distance between two points.

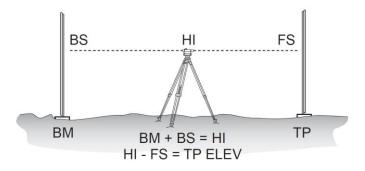
• Backsight (BS)

A staff reading taken on a known elevation point (e.g., a benchmark) to determine the height of the instrument.

• Foresight (FS)

A staff reading taken on a point of unknown elevation to determine its height relative to the instrument.

• Intermediate Sight (IS)


A staff reading taken on intermediate points between the backsight and foresight for additional information.

• Turning Point (TP)

A temporary point used to transfer the height of the instrument when shifting the instrument during a survey

Calculating Elevations in Leveling

Height of Instrument (HI) Method

In this method, the elevation of the instrument's line of sight is calculated first. **Steps**:

1. Add the back sight reading (BS) to the elevation of the known point to find HI:

$\succ HI = Elevation of BM + BS$

- 2. Subtract the foresight reading (FS) from the HI to get the elevation of the unknown point:
 - > Elevation = HI FS

Example:

Station	BS	IS	FS	Н	Elevation
BM	2.500			102.500	100.000
А		2.200			100.300
В			1.800		99.900