Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department



# Academic Program and Course Description Guide

2024

# **Introduction:**

The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program.

The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work.

In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process.

### **Concepts and terminology:**

<u>Academic Program Description</u>: The academic program description provides a brief summary of its vision, mission and objectives, including an accurate description of the targeted learning outcomes according to specific learning strategies.

<u>Course Description</u>: Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description.

1

**<u>Program Vision:</u>** An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable.

**<u>Program Mission</u>**: Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions.

**Program Objectives:** They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

<u>**Curriculum Structure:**</u> All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours.

**Learning Outcomes:** A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program.

**Teaching and learning strategies:** They are the strategies used by the faculty members to develop students' teaching and learning, and they are plans that are followed to reach the learning goals. They describe all classroom and extra-curricular activities to achieve the learning outcomes of the program.

### Academic Program Description Form

University Name: Southern Technical University

Faculty/Institute: Technical Institute of Architecture

Scientific Department: Electronic and communications technologies

Academic or Professional Program Name: Diploma in electronics and

communications technology

Final Certificate Name: Diploma in electronic and communications technologies

Academic System: quarterly

Description Preparation Date: 5/10/2023

Signature: M 2

Head of Department

Name:..Dr.Muhsen Jabbar Qubian Date: 1/ /3/2024 Signature:

Scientific Associate Name:.

Suhad Jassim Khalifa Date:/2/3/2024

### File Completion Date: 10/3/2024

The file is checked by:

Department of Quality Assurance and University Performance

Director of the Quality Assurance and University Performance Department:

2024

Naglaa Kadhem Abdel Hassan Date: /2/3/2024

Signature:

Approval of the Dean

الممسوحة ضوئيا بـ CamScanner

### 1. Program Vision

Forming a scientific or human base in the field of maintenance, programming and upkeep of electronic devices and computer applications. It seeks to prepare plans to develop staff and curricula to ensure that the requirements of quality standards are met, in addition to keeping pace with development and ready-made applications in order to contribute to achieving part of them, and for the department to be a distinguished scientific research edifice in its programs and curricula. And his scientific research.

### 2. Program Mission

The department seeks to prepare specialized staff with a high level of professionalism to deal with electronic and information software and work to provide appropriate opportunities to develop the community's capabilities in investing in the developments in technology and meeting their needs in the field of computers, and providing training consulting services.

### 3. Program Objectives

1- Preparing qualified technical personnel to maintain electronic equipment and devices.

- 2- Preparing and verifying the data and entering it into the computer.
- 3- Participate in testing, auditing and debugging programmed systems.
- 4- Participation in preparing communications system designs.

### 4. Program Accreditation

None

## 5. Other external influences

1-Application + research projects + ongoing workshops for students.

2- Also, external influences contribute to solving many of the dilemmas related to approved studies.

3- Labor market needs, quality of graduates, and support of students' skills.

| 6. Program Strue  | 6. Program Structure |                     |            |                |  |  |  |  |
|-------------------|----------------------|---------------------|------------|----------------|--|--|--|--|
| Program Structure | Number of<br>Courses | Credit hours        | Percentage | Reviews*       |  |  |  |  |
| Institution       |                      |                     |            |                |  |  |  |  |
| Requirements      | 15 The first         | 25 units            | 46%        | Specialization |  |  |  |  |
|                   | stage                | 23 units            | 54%        | +              |  |  |  |  |
|                   | 16The second         |                     |            | assistant      |  |  |  |  |
|                   | stage                |                     |            |                |  |  |  |  |
| Summer Training   | For two month        | s for the first sta | age        |                |  |  |  |  |
| Other             |                      |                     |            |                |  |  |  |  |

\* This can include notes whether the course is basic or optional.

| 7. Program I | 7. Program Description |                           |             |           |  |  |  |  |  |
|--------------|------------------------|---------------------------|-------------|-----------|--|--|--|--|--|
| Year/Level   | Course Code            | Course Name               | Credit      | Hours     |  |  |  |  |  |
|              |                        |                           | theoretical | practical |  |  |  |  |  |
|              | COM1                   |                           | 0           | 2         |  |  |  |  |  |
|              |                        | Computer principles 1     |             |           |  |  |  |  |  |
|              | MATH                   |                           | 2           | 0         |  |  |  |  |  |
|              |                        | mathematics               |             |           |  |  |  |  |  |
|              | ELEC                   |                           | 2           | 2         |  |  |  |  |  |
| 2022/2023    |                        | Principles of electronics |             |           |  |  |  |  |  |

|                 | <b>D</b> C |                                    |                | •        |
|-----------------|------------|------------------------------------|----------------|----------|
| The first stage | DC         | DC circuits                        | 2              | 2        |
| Chapter I       | DIG        | Principles of digital circuits     | 2              | 2        |
| enap ter 1      | DRA        |                                    | 0              | 3        |
|                 | WOR        | Electrical and engineering drawing | 0              | 4        |
|                 |            | The workshop                       |                |          |
|                 | HUM        | Human rights and democracy         | 2              | 0        |
| المجموع         |            |                                    | 10             | 15       |
|                 | ENG        |                                    | <u>10</u><br>2 | 0        |
|                 | WOD        | English language (1)               |                |          |
| 2022/2023       | WOR        | The workshop                       | 2              | 4        |
| 2022/2023       | ELEC       | The workshop                       | 2              | 2        |
| The first stage | ELEU       | Electronics                        | 2              | <u> </u> |
| ine mot stuge   | AC         |                                    | 2              | 2        |
| Chapter II      | AC         | AC circuits                        | 2              | -        |
| 1               | DIG        |                                    | 2              | 2        |
|                 |            | Digital circuit applications       | -              | -        |
|                 | DRA        |                                    | 0              | 4        |
|                 |            | Calculator assisted drawing        | -              | -        |
|                 | SFE        |                                    | 2              | 0        |
|                 |            | Occupational safety                |                |          |
| المجموع         |            |                                    | 12             | 14       |
|                 | ELEC       |                                    | 2              | 2        |
| 2022/2023       |            | Electronic circuits (1)            |                |          |
| TT1 1           | DEV        |                                    | 2              | 2        |
| The second      | ~~~~       | Measuring devices (1)              |                |          |
| nhasa           | СОМ        |                                    | 2              | 2        |
| phase           | COMMU      | Microcalculators (1)               |                | -        |
| Chapter one     | COMMU      | Communications (1)                 | 2              | 2        |
| Chapter one     | WOD        | Communications (1)                 | 0              | 4        |
|                 | WOR        | Electronic devices maintenance     | 0              | 4        |
|                 | ENG        | Eactronic devices maintenance      | 2              | 0        |
|                 | LING       | English language (2)               | Z              | U        |
|                 | PLC        |                                    | 2              | 2        |
|                 | 120        | Logic control circuits             | 2              | <u> </u> |
|                 | PRO        |                                    | 0              | 0        |
|                 |            | Research project                   | U              | , v      |
| المجموع         |            |                                    | 14             | 14       |
|                 | ELEC       |                                    | 2              | 2        |
|                 |            | <b>Electronic circuits (2)</b>     |                |          |
|                 | DEV        |                                    | 2              | 2        |
|                 |            | measuring devices (2)              |                |          |
|                 | DIG        | Digital communications             | 2              | 2        |
|                 |            |                                    |                |          |

|         | WOR  | Maintenance of electronic devices | 0  | 4  |
|---------|------|-----------------------------------|----|----|
|         | CON  | Control systems                   | 2  | 2  |
|         | COMP | Computer applications             | 0  | 2  |
|         | ICS  | Audio and visual devices          | 2  | 2  |
|         | CRI  | Baath crimes                      | 2  | 0  |
|         | PROJ | research project                  | 0  | 2  |
| المجموع |      |                                   | 12 | 18 |

Number of theoretical hours for the two years = 42

Percentage of theoretical hours = 40%

Number of practical hours for two years = 62

Percentage of practical hours = 60%

Total graduation units for the two years = 104

# 8. Expected learning outcomes of the program Knowledge A1- Introducing the student to the design of electronic circuits and the extent of their realistic implementation. A2- Teaching the student the basics of electronics. A3- Providing the student with the skills to implement and install electronic equipment and devices. A4- The student's knowledge of digital and logical circuits and their implementation areas. A5- The student's knowledge of the labor market and changes in the fields of electronics. A6- The student's knowledge of how to conduct laboratory experiments and how to analyze and apply the results.

B1 - Carrying out periodic and emergency maintenance work for electronic equipment and devices.B2 - Installing electronic devices and their components and

implementing maintenance methods for them.

**B 3-** Maintaining electronic devices and ensuring their durability.

B4- Installing, maintaining and operating communications and digital devices.

### Ethics

C1- Introducing the graduate into the labor market and spreading the spirit

of fair competition.

C2- Competition among undergraduate students for the purpose of

completing higher university studies.

C3- The ability to analyze, deduce, and practice professional ethics in all

circumstances.

C4- Working under pressure, adopting equality and justice, and working as

a member of one team.

### 9. Teaching and Learning Strategies

- Education strategies:

Teaching strategies are the methods and approaches followed by the professor in

communicating educational goals to students. Below are some of the teaching strategies:

1- Lecture or delivery strategy: In which the professor presents information, facts, and other ideas to the students related to the topic at hand.

2- Discussion strategy: In this type of teaching strategy, the professor determines the topic that will be discussed in the lecture

**3-** Problem-solving strategy: In this strategy, the cognitive environment of students is activated through problem-solving activities, through most positive processes and activities that stimulate thinking and raise motivation to learn.

4-Project-based learning strategy: This strategy relies on design work that requires applied work. Students are assigned an applied project for the activity, and they are forced to research, read, and use books and all cognitive sources in order to accomplish what is required.

-Learning strategies:

These are the methods that the student follows in order to get the best benefit from the educational material, and the most important strategies are:

1- Conducting daily exams for students before the start of the lecture in order to remember previous lectures and information.

2-One of the best types of learning methods is (studying), through which the student can memorize any electronic design circuit or law.

**3-** Inference, that is, teachers can reinforce this strategy by asking inferential questions after each lecture.

### **10. Evaluation methods**

Tests of both written and oral, in-person and electronic, daily, semester and final examinations, in addition to daily examinations, writing reports, discussing experiments and analyzing results.

| 11.Faculty                      |                     |          |                                                    |                              |          |  |
|---------------------------------|---------------------|----------|----------------------------------------------------|------------------------------|----------|--|
| Faculty Member<br>Academic Rank | S<br>Specialization |          | Special<br>Requirements/Skil<br>ls (if applicable) | Number of the teaching staff |          |  |
|                                 | General             | Special  |                                                    | Staff                        | Lecturer |  |
| 1- A.P.DR.                      | communication       | Networks | Giving                                             | Personnel                    |          |  |
| Muhsin Jabbar                   |                     |          | awareness                                          |                              |          |  |
| Kabayan                         | electricity         | Control  | lectures                                           |                              |          |  |
| 2-A.L. Iqbal                    |                     |          | Holding                                            | personnel                    |          |  |
| Hanoun listens                  | electricity         | Power    | workshops                                          |                              |          |  |
| 3- A.L. Wissam                  |                     |          | and                                                | personnel                    |          |  |
| Rahim Rassan                    | Calculators         | Systems  | seminars                                           |                              | lecturer |  |
| 4- A.L. Mortada                 |                     | networks |                                                    |                              |          |  |
| Thaer Salem                     |                     |          |                                                    |                              |          |  |
|                                 |                     |          |                                                    |                              | lecturer |  |
| 5- A.L. Saja Sami               | Law                 | rights   |                                                    |                              |          |  |
| Mahmoud                         |                     |          |                                                    |                              |          |  |
|                                 |                     |          |                                                    |                              |          |  |
|                                 |                     |          |                                                    |                              |          |  |

### Professional Development Mentoring new faculty members

1- Holding workshops, seminars and seminars on developments in the field of electronics and

information technology for reliability.

2- Put them in courses to develop administrative skills, time management, and smart skills.

3- Keeping pace and following up on the implementation of the government program and

income.

### Professional development of faculty members

The focus in the Department of Electronic and Communications Technologies in general is on continuous improvement. The department always seeks to improve the scientific and administrative process and overcome all the difficulties and obstacles that hinder the educational program by developing human resources for personal and professional development.

The following procedures explain the steps implemented or in the process of implementation in this area:

D1. Continuous improvement and development of faculty members through training programs and workshops inside and outside the department, university and country.

D2. Increasing extracurricular activities, such as holding conferences, scientific seminars, and personal and sports creativity, locally, regionally, and internationally.

D3. Encouraging faculty members to obtain the highest academic and administrative ranks through promotions.

D4. Providing modern scientific sources and books for the department's library to keep pace with continuous progress.

### **12.Acceptance Criterion**

1-Acceptance rates obtained by students in vocational preparatory school.

2-The institute's examinations for the department and the student's desire.

3- Examining the student's fitness and mental ability.

4- Central admission issued by the Ministry of Higher Education.

### 13. The most important sources of information about the program

•The curriculum approved by the Ministry of Higher Education and Scientific Research and its guidelines.

• Decisions and recommendations of the scientific committees at the Southern Technical University.

- Courses in teaching methods.
- Self-assessment report (SAR) for previous years.
- Description of courses.
- Courses in civil society organizations.
- Conferences, seminars, workshops and panel discussions.
- Relevant state institutions.
- Internet searches for similar experiences.
- Personal experiences
- Labor market needs

### 14.Program Development Plan

1- Adding materials that keep pace with the change and development taking place in various electronic and communications technologies.

2- Deleting and creating old materials while preserving the basics and their continuity.

3- Stimulating and encouraging scientific and practical visits to laboratories, operating

companies and government departments.

4- Developing curricula to keep pace with the times, technology and globalization.

5- Opening specialized branches in the field of measurement, control, and network

maintenance according to the needs of the labor market.

6-Use and develop comprehensive virtual laboratories.



|            |                |                           | Program Skills    | Out          | line         |              |              |              |              |              |              |              |              |              |              |
|------------|----------------|---------------------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|            |                |                           |                   |              |              | Re           | quire        | d pro        | gram         | Lear         | ning         | outco        | mes          |              |              |
| Year/Level | Course<br>Code | Course Name               | Basic or optional | Kno          | wledg        | ge           |              | Skil         | ls           |              |              | Ethi         | cs           |              |              |
|            | Goue           |                           |                   | A1           | A2           | A3           | A4           | B1           | B2           | <b>B</b> 3   | <b>B4</b>    | <b>C1</b>    | C2           | <b>C</b> 3   | C4           |
|            |                | Principles of electronics | Specialized       | V            |              |              |              |              |              |              |              |              | $\checkmark$ | V            | $\checkmark$ |
|            |                | Digital circuits          | Specialized       | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | V            |
| The First  |                | Electrical circuits       | Specialized       | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | V            |
|            |                | The workshop              | Specialized       | $\checkmark$ | V            |
|            |                | mathematics               | assist            |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |              | V            |
|            |                | Electronic circuits       | Specialized       | V            | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ |
| The Second |                | Microcomputers            | Specialized       | V            | $\checkmark$ | $\checkmark$ | V            | $\checkmark$ | V            |
|            |                | Telecommunications        | Specialized       |              | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ | $\checkmark$ |              |              |              |              | V            |

|  | Control systems      | Specialized | $\checkmark$ | $\checkmark$ |      | $\checkmark$ | <br>$\checkmark$ |      | $\checkmark$ | $\checkmark$ |
|--|----------------------|-------------|--------------|--------------|------|--------------|------------------|------|--------------|--------------|
|  |                      | General     |              |              | <br> |              | <br>             | <br> |              | $\checkmark$ |
|  | English language (2) |             |              |              |      |              |                  |      |              | l            |

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

# **Course Description Form**

1. Course Name:

Measurement and control devices

2. Course Code:

3. Semester / Year:

quarterly

4. Description Preparation Date:5/10/2023

This description was prepared by the committee placed in the electronics department5. Available Attendance Forms:

In-person + electronic + integrated6. Number of Credit Hours (Total) / Number of Units (Total)

120 hours annually. 4 hours per week / 120 units

7. Course administrator's name (mention all, if more than one name)Name:1-Muhsin Jabbar kabayan.....Email: <a href="muhsin.alamery@stu.edu.iq">muhsin.alamery@stu.edu.iq</a>2- Iqbal Hanoon Essig.....Email: <a href="mulsin.iqbal.hanoon@stu.edu.iq">iqbal.hanoon@stu.edu.iq</a>

8. Course Objectives

1- Teaching the student the concept of measuring devices and the conditions for indicating

them and teaching them.

2-Devices for measuring various electrical quantities, both electronic and digital.

3- Measuring pressure and temperature with electrical and non-electrical devices.

4 Elements of power transformers, their types, and their use in measuring bridges.

5- Elements of registration and environmental visa.

9. Teaching and Learning Strategies

| Strategy | - Education strategies:                                                      |
|----------|------------------------------------------------------------------------------|
|          | Teaching strategies are the methods and approaches followed by the           |
|          | professor in communicating educational goals to students. Below are some     |
|          | of the teaching strategies:                                                  |
|          | 1- Lecture or delivery strategy: In which the professor presents             |
|          | information, facts, and other ideas to the students related to the topic at  |
|          | hand.                                                                        |
|          | 2- Discussion strategy: In this type of teaching strategy, the professor     |
|          | determines the topic that will be discussed in the lecture                   |
|          | 3- Problem-solving strategy: In this strategy, the cognitive environment of  |
|          | students is activated through problem-solving activities, through most       |
|          | positive processes and activities that stimulate thinking and raise          |
|          | motivation to learn.                                                         |
|          | 4- Project-based learning strategy: This strategy relies on design work that |
|          | requires applied work. Students are assigned an applied project for the      |
|          | activity, and they are forced to research, read, and use books and all       |
|          | cognitive sources in order to accomplish what is required.                   |
|          | -Learning strategies:                                                        |
|          | These are the methods that the student follows in order to get the best      |
|          | benefit from the educational material, and the most important strategies     |
|          | are:                                                                         |
|          | 1- Conducting daily exams for students before the start of the lecture in    |
|          | order to remember previous lectures and information.                         |
|          | 2-One of the best types of learning methods is (studying), through which     |
|          | the student can memorize any electronic design circuit or law.               |

| 10. Cour                                |             | onclusion, that is, tea<br>ential questions after<br>ure: |                                                     | this strategy b | y asking      |
|-----------------------------------------|-------------|-----------------------------------------------------------|-----------------------------------------------------|-----------------|---------------|
| Digital c                               | ircuits (fi | rst stage)                                                |                                                     |                 |               |
| Week                                    | Hours       | Required                                                  | Unit or subject                                     | Learning        | Evaluation    |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |             | Learning                                                  | name                                                | method          | method        |
|                                         |             | Outcomes                                                  | nunic                                               | memou           | memou         |
| 1                                       | 4 hours     |                                                           | neral idea of numerical                             |                 |               |
|                                         | 4 hours     | 1- Teaching the                                           | tems (types and details)                            | lecture         | Oral and      |
| 2                                       | 4 hours     | i i caching the                                           | 2-Transfer between the                              |                 | or ur untu    |
| 3                                       |             | student the basics of                                     | numerical systems                                   | And the         | written tests |
| 4                                       | 4 hours     | stutent the vasies of                                     | 3- Logic gates (types,                              |                 | witten tests  |
| 5                                       | 4 hours     | logical circuits in                                       | working principle, truth (tables, logical symbol    | laboratory      |               |
| 6                                       | 4 hours     | logical circuits in                                       | Iow to connect the logic                            | labol atol y    |               |
| 7                                       | 4 hours     | alaatuania                                                | es to form logic circuits                           |                 |               |
| 8                                       | 4 hours     | electronic                                                | Boolean algebra and the                             |                 |               |
| 9                                       | 4 hours     |                                                           | rule of de-Morgan                                   |                 |               |
| 10                                      | 4 hours     | computers and how                                         | Simplification of logical                           |                 |               |
| 11                                      | 4 hours     |                                                           | equations using Boolean                             |                 |               |
| 12                                      | 4 hours     | to                                                        | ebra and the laws of De                             |                 |               |
| 13                                      | 4 hours     |                                                           | Morgan's laws<br>The design of the logical          |                 |               |
| 14                                      | 4 hours     | 2- Build simple                                           | gates using NOR and                                 |                 |               |
| 15                                      | 4 hours     |                                                           | NANDcircuits                                        |                 |               |
| 10                                      | 4 110015    | digital circuits using                                    | 8-Ways of writing the                               |                 |               |
|                                         |             |                                                           | quation from truth table                            |                 |               |
|                                         |             | Truth tables                                              | (POS, SOP)                                          |                 |               |
|                                         |             |                                                           | Karnaugh Map (for two                               |                 |               |
|                                         |             | Teaching the                                              | variables, the three variables, the four            |                 |               |
|                                         |             |                                                           | (variables)                                         |                 |               |
|                                         |             | student swing                                             | Simplification of logical                           |                 |               |
|                                         |             | C C                                                       | uations using Karnaugh                              |                 |               |
|                                         |             | circles                                                   | Мар                                                 |                 |               |
|                                         |             |                                                           | 11-Calculations in the                              |                 |               |
|                                         |             | Counters, addition                                        | binary system (addition,                            |                 |               |
|                                         |             |                                                           | subtraction, subtraction<br>.(using complements)    |                 |               |
|                                         |             | circuits, and                                             | 12-Logi circuit                                     |                 |               |
| vacation                                |             |                                                           | applications                                        |                 |               |
| vacation                                |             | registers.                                                | (half adder, full adder,                            |                 |               |
|                                         |             | 0                                                         | parallel adder circuits)                            |                 |               |
|                                         |             |                                                           | Binarysubtractorcircuits                            |                 |               |
|                                         |             |                                                           | (half subtractor,full                               |                 |               |
|                                         |             |                                                           | subtractorparallel                                  |                 |               |
|                                         |             |                                                           | tractor) circuit using the der circuit by method of |                 |               |
|                                         |             |                                                           | 1s complements                                      |                 |               |
|                                         |             |                                                           | 14-The circuit of digital                           |                 |               |
|                                         |             |                                                           | nparator ( one stage and                            |                 |               |

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 |
|-------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------|

# 11. Course Structure:

Electrical circuits and measurements (first stage)

| Week     | Hours   | Required             | Unit or subject name                                                        | Learning   | Evaluation    |
|----------|---------|----------------------|-----------------------------------------------------------------------------|------------|---------------|
|          |         | Learning             |                                                                             | method     | method        |
|          |         | Outcomes             |                                                                             |            |               |
| 1        | 4 hours |                      | I-How to use measuring devices                                              |            |               |
| 2        | 4 hours | The student will be  | Various tools in the<br>vorkshop, such as (amphometer,                      | lecture    | Oral and      |
| 3        | 4 hours |                      | oscilloscope, power,).                                                      |            |               |
| 4        | 4 hours | able to:             | 2-How to use caustics<br>- types                                            | And the    | written tests |
| 5        | 4 hours |                      | Irons used in the                                                           |            |               |
| 6        | 4 hours | 1- Get to know       | rkshop - training on the Samsung<br>ironing                                 | laboratory |               |
| 7        | 4 hours |                      | program.                                                                    |            |               |
| 8        | 4 hours | Measuring devices    | 3- How to use solder<br>absorbent caustic – solder                          |            |               |
| 9        | 4 hours |                      | removing tools such as Jordan                                               |            |               |
| 10       | 4 hours | different and their  | absorbent<br>(Soldering Sucker), Wire Lime                                  |            |               |
| 11       | 4 hours |                      | Remover (Old Remover),                                                      |            |               |
| 12       | 4 hours | uses                 | raining on some of its operating uipment on the printed board, the          |            |               |
| 13       | 4 hours |                      | caustics used in soldering                                                  |            |               |
| 14       | 4 hours | 2- Get to know       | he integrated electronic circuit -<br>ect proficiency in IC soldering - how |            |               |
| 15       | 4 hours | D                    | emove the electronic lighting doses                                         |            |               |
| -        | 1 nours | Printed electronic   | nd remove them from the circuit.<br>Ifferent printed electronic circuits -  |            |               |
|          |         | 1 1 1 1 1            | irning how to perforate them and                                            |            |               |
|          |         | boards and dealing   | all various electronic components on them.                                  |            |               |
|          |         |                      | The different types of resistors                                            |            |               |
|          |         | with her             | here the material the resistors are                                         |            |               |
|          |         | 2 Daing able to      | made of - the capacity that each<br>resistance can withstand -              |            |               |
|          |         | 3- Being able to     | Iow to read resistor values using                                           |            |               |
|          |         | build various        | methods<br>Various – variable resistors and                                 |            |               |
|          |         | build vallous        | Special (VDR, PTC, NTC)                                                     |            |               |
|          |         | electronic circuits  | And how to check it.<br>6- Make a circuit to connect the                    |            |               |
|          |         | cicculonic circuits  | resistors to                                                                |            |               |
|          |         | on                   | straight<br>ke a circuit to connect the resistors                           |            |               |
|          |         | on                   | to                                                                          |            |               |
| vacation |         | Printed board and    | Parallelism<br>ke a circuit to connect the resistors                        |            |               |
|          |         | T Time a board and   | to                                                                          |            |               |
|          |         | Learn how to         | eries and parallel within a circuit<br>The different types of expanders     |            |               |
|          |         |                      | here is the type of insulator used?                                         |            |               |
|          |         | examine and test it. | panels and the voltage they bear -<br>ling capacitor values using different |            |               |
|          |         |                      | hods - How to check capacitors and                                          |            |               |
|          |         |                      | rs to replace them - Making circuits<br>to connect capacitors to            |            |               |
|          |         |                      | es, parallel, and mixed connectivity                                        |            |               |
|          |         |                      | On the printed board with the examination.                                  |            |               |
|          |         |                      | 8-Different types of keys                                                   |            |               |
|          |         |                      | l in electronic devices and methods                                         |            |               |
|          |         |                      | esting them - the current they can<br>withstand                             |            |               |
|          |         |                      | Each key - use each type.                                                   |            |               |
|          |         |                      | 9-Types of fuses used in<br>ronic circuits - types and diameters            |            |               |
|          |         |                      | of wires used in fuses                                                      |            |               |
|          |         |                      | - The current that each type can<br>withstand -                             |            |               |
|          |         |                      | How to repair fuses.                                                        |            |               |
|          |         |                      | 10-Different types of quasi<br>Connectors                                   |            |               |
| 1        | 4 hours |                      | (Diode, transistor, etc.) from                                              |            |               |
| 2        | 4 hours |                      | Vhere it is manufactured and the<br>materials                               |            | 1             |

| r             | r       |                                                                              |   |
|---------------|---------|------------------------------------------------------------------------------|---|
| 3             | 4 hours | Methods used in its manufacture                                              |   |
| 4             | 4 hours | Number them and find their equivalents.                                      |   |
| 5             | 4 hours | nspection of faulty semiconductors                                           |   |
| 6             | 4 hours | (diode, transistor, etc.)                                                    |   |
| <b>0</b><br>7 |         | Valid for a group of them.<br>12- Integrated Circuits -                      |   |
|               | 4 hours | entify the numbering of parties to                                           |   |
| 8             | 4 hours | several                                                                      |   |
| 9             | 4 hours | Types of these circuits - how<br>Manufacture of these circuits -             |   |
| 10            | 4 hours | components                                                                   |   |
| 11            | 4 hours | involved in manufacturing.                                                   |   |
| 12            | 4 hours | Showing a scientific film about how                                          |   |
| 13            | 4 hours | Electronic components industry<br>istors, capacitors, transistors, etc.).    |   |
| 13            |         | How to read electronic maps and                                              |   |
| 14            | 4 hours | e circuits to determine the location                                         |   |
| 15            | 4 hours | of the fault<br>Its causes.                                                  |   |
|               |         | The student learned how to design                                            |   |
|               |         | ectronic circuits on the board and                                           |   |
|               |         | all the electronic components on it -<br>how                                 |   |
|               |         | now<br>der these components to the board                                     |   |
|               |         | (simple circle).                                                             |   |
|               |         | The previous work is repeated by                                             |   |
|               |         | standing up<br>e student designs a more complex                              |   |
|               |         | circuit.                                                                     |   |
|               |         | Examination of semiconductors -                                              |   |
|               |         | nsistors and diodes that are faulty<br>and suitable for the assembly         |   |
|               |         | Of which.                                                                    |   |
|               |         | A field visit to one of the industrial                                       |   |
|               |         | facilities in the socialist sector.<br>4- Building complex and simple        |   |
|               |         | ctronic circuits on printed boards                                           |   |
|               |         | Learn how to check it and                                                    |   |
|               |         | Testing it is like a filter circuit.<br>onstruct a half-wave unified circuit |   |
|               |         | the printed board and identification                                         |   |
|               |         | How to examine and test it.                                                  |   |
|               |         | Construct the full wave circuit on                                           |   |
|               |         | he printed board and learn how to<br>inspect and test it.                    |   |
|               |         | Build a full-wave voltage multiplier                                         |   |
|               |         | it on a printed board and identify it                                        |   |
|               |         | How to examine and test it.<br>Construct a circle of clippers on the         |   |
|               |         | printed board and identify                                                   |   |
|               |         | How to inspect and test it.                                                  |   |
|               |         | Using a Zener Diode as a voltage                                             |   |
|               |         | regulator circuit                                                            |   |
|               |         | On the board                                                                 |   |
|               |         | Print and learn how                                                          |   |
|               |         | Checked and tested.<br>- Construct a transistor amplifier                    |   |
|               |         | circuit                                                                      |   |
|               |         | the printed board and identification                                         |   |
|               |         | ow to examine and test it (based on<br>actical common emitter amplifier      |   |
|               |         | circuit.                                                                     |   |
|               |         | - Construct a two-stage amplifier                                            |   |
|               |         | circuit<br>Printed board and learn how                                       |   |
|               |         | Checked and tested.                                                          |   |
|               |         | Build a push-pull amplifier circuit                                          |   |
|               |         | e printed board and learn how to                                             |   |
|               |         | inspect and test it.<br>Build an RC Oscillator circuit on a                  |   |
|               |         | ed board and learn how to examine                                            |   |
|               |         | and test it.                                                                 |   |
|               |         | Build a Hartley circuit on a printed                                         |   |
| L             | I       | board and learn how                                                          | I |

|  | Checked and tested.<br>Build a circuit with a Variable DC<br>Itage supply on the printed board<br>Learn how to check it and<br>Test it. |  |
|--|-----------------------------------------------------------------------------------------------------------------------------------------|--|
|--|-----------------------------------------------------------------------------------------------------------------------------------------|--|

| 12. Cou  | rse Structu | ure:                  |                                                                     |            |               |
|----------|-------------|-----------------------|---------------------------------------------------------------------|------------|---------------|
| Laborat  | ories/elec  | tronic workshop(f     | ïrst stage)                                                         |            |               |
| Week     | Hours       | Required              | Unit or subject name                                                | Learning   | Evaluation    |
|          |             | Learning              |                                                                     | method     | method        |
|          |             | Outcomes              |                                                                     |            |               |
| 1        | 4 hours     |                       | 1-How to use measuring                                              |            |               |
| 2        | 4 hours     |                       | devices<br>ous tools in the workshop, such                          | lecture    | Oral and      |
| 3        | 4 hours     |                       | amphiometer, oscilloscope,                                          |            |               |
| 4        | 4 hours     |                       | power supply,).                                                     | And the    | written tests |
| 5        | 4 hours     | The student will be a |                                                                     |            |               |
| 5<br>6   | 4 hours     | to:                   | types                                                               | laboratory |               |
| 0<br>7   | 4 hours     | 1- Get to know        | ustics used in the workshop -<br>training on caustic welding.       |            |               |
| 8        | 4 hours     | Measuring devices     | 3-How to use a soldering                                            |            |               |
|          |             |                       | on - a soldering iron, such as a                                    |            |               |
| 9        | 4 hours     | 2- Get to know        | soldering iron                                                      |            |               |
| 10       | 4 hours     | Printed electronic    | older sucker), older remover,<br>Training on some electronic        |            |               |
| 11       | 4 hours     | boards and dealing    | nponents and placing them on                                        |            |               |
| 12       | 4 hours     | with her              | printed board, caustics used in                                     |            |               |
| 13       | 4 hours     | 0                     | oldering integrated electronic                                      |            |               |
| 14       | 4 hours     | various electronic    | cuits - the correct method for<br>Idering an IC - how to remove     |            |               |
| 15       | 4 hours     | circuits on           | solder from the ends of an                                          |            |               |
|          |             | Printed board and     | ectronic circuit and remove it                                      |            |               |
|          |             | Learn how to examin   |                                                                     |            |               |
|          |             | and test it.          | 4-Different printed<br>ectronic circuits - learning how             |            |               |
|          |             |                       | o perforate them and install                                        |            |               |
|          |             |                       | ious electronic components on                                       |            |               |
|          |             |                       | them.                                                               |            |               |
|          |             |                       | 5-The different types of                                            |            |               |
|          |             |                       | resistors                                                           |            |               |
|          |             |                       | here the material the resistors<br>made of - the capacity that each |            |               |
|          |             |                       | resistance can withstand -                                          |            |               |
|          |             |                       | How to read resistor values                                         |            |               |
|          |             |                       | using methods                                                       |            |               |
|          |             |                       | arious – variable resistors and<br>Special (VDR, PTC, NTC)          |            |               |
| vacation |             |                       | And how to check it.                                                |            |               |
|          |             |                       | 6- Make a circuit to connect                                        |            |               |
|          |             |                       | the resistors to                                                    |            |               |
|          |             |                       | straight<br>Valva a circuit to connect the                          |            |               |
|          |             |                       | Make a circuit to connect the<br>resistors to                       |            |               |
|          |             |                       | Parallelism                                                         |            |               |
|          |             |                       | Make a circuit to connect                                           |            |               |
|          |             |                       | the resistors to                                                    |            |               |
|          |             | 1                     | Series and parallel within a                                        |            |               |

|   | circuit                                                         |   |
|---|-----------------------------------------------------------------|---|
|   | 7-The different types of                                        |   |
|   | expanders                                                       |   |
|   | Where is the type of insulator                                  |   |
|   | used?<br>panels and the voltage they bear                       |   |
|   |                                                                 |   |
|   | Reading capacitor values                                        |   |
|   | using different methods –                                       |   |
|   | How to check capacitors and                                     |   |
|   | ways to replace them –                                          |   |
|   | Making circuits to connect                                      |   |
|   | capacitors to<br>Series, parallel, and mixed                    |   |
|   | connectivity                                                    |   |
|   | in the printed board with the                                   |   |
|   | examination.                                                    |   |
|   | 8-Different types of keys                                       |   |
|   | sed in electronic devices and                                   |   |
|   | nethods of testing them - the                                   |   |
|   | current they can withstand                                      |   |
|   | Each key - use each type.                                       |   |
|   | 9-Types of fuses used in                                        |   |
|   | lectronic circuits - types and ameters of wires used in fuses   |   |
|   | The current that each type can                                  |   |
|   | withstand -                                                     |   |
|   | How to repair fuses.                                            |   |
|   | -Files - types - methods                                        |   |
|   | mination - uses - identification                                |   |
|   | ures - reading file types that use                              |   |
|   | color codes and numbering.<br>trical transformers - their types |   |
|   | -                                                               |   |
|   | Methods of examining it -                                       |   |
|   | determining the type of                                         |   |
|   | transformer                                                     |   |
|   | – Autotransformation – the                                      |   |
|   | difference between                                              |   |
|   | Autotransformers and<br>transformers                            |   |
|   | Ordinary.                                                       |   |
|   | 10-Different types of quasi                                     |   |
|   | Connectors                                                      |   |
|   | [Diode, transistor, etc.] from                                  |   |
|   | iere it is manufactured and the                                 |   |
|   | materials<br>ethods used in its manufacture                     |   |
|   | Number them and find their                                      |   |
|   | equivalents.                                                    |   |
|   | 11- Inspection of faulty                                        |   |
|   | hiconductors (diode, transistor,                                |   |
|   | etc.)                                                           |   |
|   | Valid for a group of them.                                      |   |
|   | 12- Integrated Circuits -<br>entify the numbering of parties    |   |
|   | to several                                                      |   |
|   | Types of these circuits - how                                   |   |
|   | Ianufacture of these circuits -                                 |   |
|   | components                                                      |   |
|   | involved in manufacturing.                                      |   |
|   | 13- Showing a scientific film                                   |   |
|   | about how                                                       |   |
|   | ectronic components industry                                    |   |
|   | sistors, capacitors, transistors,<br>etc.).                     |   |
|   | 14- How to read electronic                                      |   |
| L |                                                                 | J |

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 4 hours<br>4 hours | maps and trace circuits to<br>ermine the location of the fault<br>Its causes.<br>15- The student learned<br>how<br>lesign electronic circuits on the<br>bard and install the electronic<br>components on it - how<br>older these components to the<br>board<br>(simple circle).<br> |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

| printed board<br>Learn how to check it and<br>Test it. |
|--------------------------------------------------------|
|--------------------------------------------------------|

| 13. Cou                                                                       | 13. Course Structure:                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                           |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|--|--|--|
| Electronics (first stage)                                                     |                                                                                                                                                                                                    |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                           |  |  |  |
| Week                                                                          | Hours                                                                                                                                                                                              | Required<br>Learning<br>Outcomes                                                                                                                | Unit or subject name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Learning<br>method               | Evaluation<br>method      |  |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 4 hours<br>4 hours | OutcomesIntroducing thestudent to:Electroniccomponentsmanufactured fromsemiconductors ofvarious types -composition -properties - usesIn circles | 1- Semiconductor theory-<br>Atomic structure-levels<br>Energy-Crystals-Conduction in<br>Crystals - gap current - how to<br>Move gaps.<br>2- Grafting-positive crystal type<br>type N-current negative crystal<br>Electrons and gap current<br>-Total resistance.<br>3-4- Semiconductor diodes-<br>N connection—Evacuation zone<br>configuration<br>-Barrier Voltage- Power Hill-<br>Thermal Effects - Duo<br>Biased-biasForward-biased<br>Inverse-isotropy curves in<br>orward and reverse directions -<br>crossing current - ephemeral<br>current<br>Minority carriers – permissive<br>leakage current<br>Breaking voltage - breakdown<br>voltage - is greatest<br>ward current - greatest reverse<br>urrent - equivalent circuit of the<br>diode. | lecture<br>And the<br>laboratory | Oral and<br>written tests |  |  |  |
|                                                                               |                                                                                                                                                                                                    | Electronic                                                                                                                                      | diode.<br>5- The diode as a curren<br>nifier - a half-wave unifier - the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                           |  |  |  |

|          |         |                      | ue - the continuous value of the                           |  |
|----------|---------|----------------------|------------------------------------------------------------|--|
|          |         | annlingtions and     | irrent and its calculation - the                           |  |
|          |         | applications and     | fective - the output frequency                             |  |
|          |         |                      | 6- Full-wave unification                                   |  |
|          |         | analysis             | ng a center-branch transformer                             |  |
|          |         | -                    | ntry combiner - calculating the                            |  |
|          |         | Its electronic       | tinuous and effective values of                            |  |
| vacation |         |                      | oltages and currents - output                              |  |
| vacation |         |                      | quency. Comparison between                                 |  |
|          |         | circuits. Giving the | half-wave and full-wave                                    |  |
|          |         |                      | fication - comparison between                              |  |
|          |         | student an idea      | full-wave unifiers.                                        |  |
|          |         | student all luea     | 7- Filters - filtering using                               |  |
|          |         |                      | plitude - (LC) and (RC) filters -                          |  |
|          |         | about                | tput voltages - ripple - voltage                           |  |
|          |         |                      | ultipliers - trimming circuits -                           |  |
|          |         | optoelectronics, its | positive trimming - negative                               |  |
|          |         | optoelectromes, its  | nming - compound trimming -                                |  |
|          |         |                      | ak-to-peak detector - positive                             |  |
|          |         | components,          | and negative clamps.<br>8-9 - The zener diode – its        |  |
|          |         |                      | ucture - its symbol - its forward                          |  |
|          |         | integrated circuits, | and reverse properties -                                   |  |
|          |         | integrated circuits, | and reverse properties -<br>akdown and breaking voltages - |  |
|          |         | 1 1 1 1 1 1          | er impedance - power tolerance                             |  |
|          |         | and simplified       | temperature effects - zener                                |  |
|          |         |                      | proximation - constant voltage                             |  |
|          |         | applications for an  | lation - constant voltage source                           |  |
|          |         | upplications for an  | uit - variable capacitance diode                           |  |
|          |         | 1.0                  | and its applications.                                      |  |
|          |         | amplifier            | 10-11- Bipolar transistor –                                |  |
|          |         |                      | ructure - symbol - properties -                            |  |
|          |         | Processes .          | as - definition (Bdc) - definition                         |  |
|          |         | 1100000000           | (Cdc) -                                                    |  |
|          |         |                      | e relationship between them -                              |  |
|          |         |                      | lefinition of important areas                              |  |
|          |         |                      | On the characteristic curves.                              |  |
|          |         |                      | nsistor bias circuits - base bias -                        |  |
|          |         |                      | mitter bias - collector bias                               |  |
|          | 4 hours |                      | proximation in the transistor                              |  |
|          | 4 hours |                      | and the equivalent circuit.                                |  |
|          | 4 hours |                      | Transistor characteristic curves                           |  |
|          |         |                      | prk areas-Definition of Icbo and                           |  |
|          | 4 hours |                      | Iceo-Current gain curve-The                                |  |
|          | 4 hours |                      | tionship between Icbo and Icbo                             |  |
|          | 4 hours |                      | 13-Transistor bias circuits-                               |  |
| 1        |         |                      | Base bias-emitter bias.<br>14-15- The collector's bias     |  |
| 1        | 4 hours |                      | Self-biasing back feed –                                   |  |
| 2        | 4 hours |                      | pltage divider bias—practical                              |  |
| 3        | 4 hours |                      | examples.                                                  |  |
| 4        | 4 hours |                      | -                                                          |  |
| -        |         |                      | l- Action points - rest point -                            |  |
| 5        | 4 hours |                      | applied examples.                                          |  |
| 6        | 4 hours |                      | - The continuous equivalent                                |  |
| 7        | 4 hours |                      | circuit of the transistor - the                            |  |
| 8        |         |                      | continuous load line                                       |  |
|          | 4 hours |                      | 3- Using the transistor to                                 |  |
| 9        | 4 hours |                      | amplify small signals - the                                |  |
| 10       |         |                      | quivalent alternating circuit -                            |  |
| 11       |         |                      | rent gain - voltage gain - power                           |  |
|          |         |                      | ideal approximation - hybrid                               |  |
| 12       |         |                      | stants - equivalent circuit using                          |  |
| 13       |         |                      | n coefficients - voltage gain -                            |  |
| 14       |         |                      | rrent gain - power gain - input                            |  |
| 15       |         |                      | and output resistors - signal                              |  |
| 13       |         | 1                    | mplifiers Small-base market-                               |  |

|     | emitter market.                     |  |
|-----|-------------------------------------|--|
|     |                                     |  |
|     | 4- Using a transistor to            |  |
|     | regulate                            |  |
|     | ltage-series regulator-parallel     |  |
|     | regulator -                         |  |
|     | onstant voltage source circuit.     |  |
|     | 5- Field effect transistor –        |  |
|     | structure - MOSFET curve -          |  |
|     | E-MOSFETD-MOSFET –                  |  |
|     | Wicker Curve- Effort Curves         |  |
|     | row Vgs, Idss, Vp - Comparison      |  |
|     | petween BJT, JFET - working         |  |
|     | theory                              |  |
|     | - FET bias circuits - constant      |  |
|     |                                     |  |
|     | ent source bias - working point     |  |
|     | lf-bias - FET equivalent circuit -  |  |
|     | using FET in small signal           |  |
|     | amplification - comparison          |  |
|     | ween types of FET - (MOSFET,        |  |
|     | FET). (BJT)                         |  |
|     | - Light dependent resistor –        |  |
|     | it-emitting diode - photodiode -    |  |
|     | ototransistor - breakout board      |  |
|     | Seven - its composition and         |  |
|     | applications.                       |  |
|     | 8-9-10-11-12-                       |  |
|     |                                     |  |
|     | Controlled silicon modules          |  |
|     | current (thyristor) - installation  |  |
|     | ypes - Properties - Theory of       |  |
|     | ction - Triaks - Dayaks - Their     |  |
|     | Symbol - Their Properties           |  |
|     | -Theory of their operation-         |  |
|     | mparison between thyristors,        |  |
|     | DACs and TRIACs-Thyristor           |  |
|     | protection                          |  |
|     | om a change in voltage, from a      |  |
|     | change in current).                 |  |
|     | change in currency.                 |  |
|     |                                     |  |
|     | 10.14.15                            |  |
|     | 13-14-15-                           |  |
|     | egrated circuits - its meaning -    |  |
|     | dvantages and disadvantages -       |  |
|     | comparison between it and           |  |
|     | iscrete components - an idea        |  |
|     | ut its manufacture - operational    |  |
|     | mplifier 741 - its symbol - its     |  |
|     | ninals - its uses - applications of |  |
|     | ational amplifiers - small signal   |  |
|     | plification - addition of signals - |  |
|     |                                     |  |
|     | ptraction of signals - examples.    |  |
|     |                                     |  |
|     |                                     |  |
| 1 1 |                                     |  |

| 14. Course Structure: |                                                 |          |                      |          |            |  |  |
|-----------------------|-------------------------------------------------|----------|----------------------|----------|------------|--|--|
| Engine                | Engineering and electrical drawing(first stage) |          |                      |          |            |  |  |
| Week                  | Hours                                           | Required | Unit or subject name | Learning | Evaluation |  |  |
|                       |                                                 | Learning |                      | method   | method     |  |  |
|                       |                                                 | Outcomes |                      |          |            |  |  |

|            |          | 1                       | 1                                                                |            |               |
|------------|----------|-------------------------|------------------------------------------------------------------|------------|---------------|
| 1          | 3 hours  |                         | 1- Advantages of computer                                        |            |               |
| 2          | 3 hours  | 1- Student training     | wing, basic components of the<br>Auto CAD program                | lecture    | Oral and      |
| 3          | 3 hours  | On the corr             |                                                                  |            |               |
| 4          | 3 hours  | foundations             | 2- How to activate and run a                                     | And the    | written tests |
| 5          | 3 hours  | engineering draw        | program                                                          |            |               |
| 6          | 3 hours  | drawing and read        |                                                                  | laboratory |               |
| 7          | 3 hours  | electronic and electr   | lide an icon, activate an icon.                                  |            |               |
| 8          | 3 hours  | maps.                   | A detailed explanation of the                                    |            |               |
| 9          | 3 hours  |                         | components of a bar<br>Draw                                      |            |               |
| 10         | 3 hours  | Train the student a     | Tools Bar, Modify Tools                                          |            |               |
| 10         | 3 hours  | make him able to:       | Bar,                                                             |            |               |
| 11         | 3 hours  | a-Using engineer        |                                                                  |            |               |
| 12         |          | drawing equipment a     | 4- Learn about the types of<br>drawing lines in the Auto         |            |               |
| 13<br>14   | 3 hours  | tools, understand       | CAD program and how to                                           |            |               |
| 14         | 3 hours  | maps, and drawing th    | download                                                         |            |               |
| 15         | 3 hours  |                         | the types of lines and create<br>lines                           |            |               |
|            |          | projections.            | 5- How to draw Line, Circle,                                     |            |               |
|            |          | b-Distinguishing        | Arc in their different ways.                                     |            |               |
|            |          | 0 0                     | 6- How to draw Polygon,                                          |            |               |
|            |          | components, read        | Rectangle, Multilin, Polyline<br>7- Add dimensions and           |            |               |
|            |          | projecting and draw     |                                                                  |            |               |
|            |          | electrical maps         | uto CAD program in its ways                                      |            |               |
|            |          |                         | different.                                                       |            |               |
|            |          | fileeti onice en cures. | 8- Carrying out engineering<br>operations, drawing               |            |               |
|            |          |                         | triangle with its three sides,                                   |            |               |
|            |          |                         | straight drawing                                                 |            |               |
|            |          |                         | Parallel to a known straigh t line at a given distance           |            |               |
|            |          |                         | Draw a circle that passes                                        |            |               |
| vacation   |          |                         | ough the vertices of a triangle                                  |            |               |
|            |          |                         | is known that drawing a circle                                   |            |               |
|            |          |                         | touching sides<br>Known triangle.                                |            |               |
|            |          |                         | 9- Dividing a straight line                                      |            |               |
|            |          |                         | to a number of equal sections,                                   |            |               |
|            |          |                         | ving a five-sided polygon with a known radius, fitting two       |            |               |
|            |          |                         | pendicular lines to an internal                                  |            |               |
|            |          |                         | c of known radius, fitting two                                   |            |               |
|            |          |                         | ight lines that make an acute or use angle with each other to an |            |               |
|            |          |                         | arc of known radius.                                             |            |               |
|            |          |                         | 0- Projections, how to draw                                      |            |               |
|            |          |                         | projections,                                                     |            |               |
|            |          |                         | v to implement projections in a program                          |            |               |
|            |          |                         | Auto CAD                                                         |            |               |
|            |          |                         | 11-12-13-14-                                                     |            |               |
|            |          |                         | actical applications on project                                  |            |               |
|            |          |                         | drawing<br>15- How to draw and create                            |            |               |
|            |          |                         | 3D graphics in a program                                         |            |               |
|            |          |                         |                                                                  |            |               |
| 1          | 3 hours  |                         | 1-2-3-4-                                                         |            |               |
| 2          | 3 hours  |                         | How to draw and create 3D                                        |            |               |
| <b>-</b> 3 | 3 hours  |                         | drawings in Auto CAD<br>Electrical symbols, electronic           |            |               |
| 4          | 3 hours  |                         | ymbols, general appearance                                       |            |               |
| 5          | 3 hours  |                         |                                                                  |            |               |
| 5          | 5 110415 |                         | 6-Block,                                                         |            |               |

| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 3 hours<br>3 hours | Attribute Block,Insert<br>- How to insert electrical and<br>ectronic symbols into the Auto<br>CAD program interface.<br>8- Connecting electrical and<br>etronic symbols using lines and<br>practical applications.<br>9-10-11-12-<br>etical applications for drawing<br>electrical circuits.<br>13-14-15-<br>etical applications for drawing<br>electronic circuits |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| 15. Course Structure:<br>Electronic circuits (second stage)                   |                                                                                                                                                                   |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                           |  |  |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|--|--|--|
| Week                                                                          | Hours                                                                                                                                                             | Required<br>Learning<br>Outcomes                                                                                                                   | Unit or subject name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Learning<br>method               | Evaluation<br>method      |  |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 3 hours<br>3 hours | : Definition of<br>the student<br>Basic electronic<br>circuits,<br>methods of<br>designing them<br>Use it in<br>Practical<br>applications<br>many. | <ul> <li>-1-2-3- Class A power<br/>amplifiers</li> <li>Class B power amplifiers</li> <li>Class C power amplifiers</li> <li>4- Power equipment</li> <li>5- Using voltage regulators</li> <li>ariable resistor, Zener diode,</li> <li>eries and parallel transistor,<br/>Darlington</li> <li>6- Thyristor Ways to turn</li> <li>n and off the thyristor Ways to</li> <li>n on the gate in an (AC) circuit,<br/>(DC), pulses,</li> <li>plications for silicon modules</li> <li>7-8 - Oscillators and their</li> <li>efinition - back feed and their</li> <li>es, drawing their diagrams and<br/>finding the mathematical<br/>relationships for the final<br/>amplification of the system</li> <li>rward gain - back gain - return</li> <li>uit) - conditions of oscillation -<br/>imples of oscillator circuits (LC<br/>scillator - Hartley oscillator<br/>phase)</li> <li>9-10-11 - The transistor as<br/>a switch - Specifications of its<br/>operation on the load line - Its</li> <li>response to a rectangular input<br/>wave, transformation times -<br/>prators and their different types<br/>(unstable, unstable - bistable)</li> <li>Mathematical relationships -<br/>lector and base resistors - Input<br/>and output waveforms, their<br/>circuits - Their idea - Idea Its</li> </ul> | lecture<br>And the<br>laboratory | Oral and<br>written tests |  |  |  |

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 3 hours<br>3 hours | ation - protection - overcoming<br>ossible distortions in the output<br>signals - pulse width control.<br>12-13 - Operationa<br>amplifier - Typical diagram -<br>emplate input - Non-template<br>t - Input impedance - Template<br>molifier circuit output - Non-<br>nplate amplifier gain - Voltage<br>wer and amplification equation<br>Host - Equation for adding N<br>mber of inputs - Non-template<br>host.<br>4-15 - The inverter collector<br>cuit and the output equation -<br>non-inverting collector circuit<br>and the output equation -<br>Mathematical examples.<br> |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

| erator - its circuit - derivation of |  |
|--------------------------------------|--|
| equation for the frequency of        |  |
| output wave - modulating the         |  |
| uit to give a rectangular wave -     |  |
| example - circuit design.            |  |
| 7- Monostable vibrating              |  |
| pulse generator, its circuit -       |  |
| orking idea - drawing waves -        |  |
| rivation of the equation for the     |  |
| utput pulse width - example -        |  |
| circuit design.                      |  |
| 8- Triangle wave generator           |  |
| ircuit - working idea - drawing      |  |
| res - derivation of the equations    |  |
| for this - derivation of the         |  |
| quency equation for the output       |  |
| wave                                 |  |
| 9- The analog calculator -           |  |
| lesign - solved examples - timer     |  |
| - its construction - diagrams for    |  |
| use in vibrators - equations for     |  |
| alculating pulse width time -        |  |
| solved examples.                     |  |
| 10- Effective RC filters –           |  |
| eir advantages - properties          |  |
| HPF-LPF-                             |  |
| atures - Properties - Equations -    |  |
| sponse Curves - Mathematical         |  |
| Examples)                            |  |
| 11- Effective RC filters             |  |
| BSFBPF their advantages-             |  |
| properties                           |  |
| atures - properties - equations -    |  |
| sponse curves - mathematical         |  |
| examples                             |  |
| 12- Basic methods for                |  |
| nufacturing integrated circuits      |  |
| ngle-crystalline, thin-film and      |  |
| thick-film)                          |  |
| 13-14-15- Manufacture of             |  |
| n integrated circuit for an NPN      |  |
| transistor - Manufacture of          |  |
| grated resistors and capacitors      |  |
| Manufacture of an integrated         |  |
| ircuit for a simple electronic       |  |
| circuit                              |  |
|                                      |  |
|                                      |  |

| 16. Cou | rse Structu | ıre:                |                                                                  |          |               |
|---------|-------------|---------------------|------------------------------------------------------------------|----------|---------------|
| Microco | mputers     | (second stage)      |                                                                  |          |               |
| Week    | Hours       | Required            | Unit or subject name                                             | Learning | Evaluation    |
|         |             | Learning            |                                                                  | method   | method        |
|         |             | Outcomes            |                                                                  |          |               |
| 1       | 3 hours     | 1- Student training | 1- Introducing the                                               |          |               |
| 2       | 3 hours     |                     | abulary of the academic subject<br>nd distributing exam grades - | lecture  | Oral and      |
| 3       | 3 hours     | foundations of      | merical systems - the decimal                                    |          |               |
| 4       | 3 hours     | engineering drawin  | stem - the binary system - the                                   | And the  | written tests |
| 5       | 3 hours     | drawing and readin  | ctal system - the hexadecimal<br>ystem and its importance for    |          |               |

| 6        | 3 hours | electronic and       | icrocomputers - conversions                                       |            |  |
|----------|---------|----------------------|-------------------------------------------------------------------|------------|--|
| 7        | 3 hours | electrical maps.     | between systems.<br>2- Introducing                                | laboratory |  |
| 8        | 3 hours |                      | crocomputers, their types, and                                    |            |  |
| 9        | 3 hours | Train the student    | their relationship to other                                       |            |  |
| 10       | 3 hours | and make him able    | electronic computers.<br>3- Definitions of                        |            |  |
| 11       | 3 hours | to:                  | microcomputer terms:                                              |            |  |
| 12       | 3 hours |                      | Byte Nible Word Instruction                                       |            |  |
| 13       | 3 hours | drawing equinment    | ram-Software-Structures-Level<br>Languages                        |            |  |
| 14       | 3 hours |                      |                                                                   |            |  |
| 15       | 3 hours | undorstanding man    | Higher-low-level languages-<br>assembly language-machine          |            |  |
|          | 5 nours | and drawing their    | language.                                                         |            |  |
|          |         | -                    | 4- Microcomputer                                                  |            |  |
|          |         | engineering views    | rchitecture - block diagram -<br>1t unit - keyboard - mouse - two |            |  |
|          |         | una projections.     | es of mouse and a comparison                                      |            |  |
|          |         | 2-Distinguishing     | between them - input port.                                        |            |  |
|          |         |                      | 5- Transport system – data                                        |            |  |
|          |         | components,          | carrier - carrier<br>Addresses - lines of                         |            |  |
|          |         | reading, projecting  | command and control - the                                         |            |  |
|          |         | and drawing          | usefulness of each -                                              |            |  |
|          |         | electrical maps      | Compare them.<br>6- The output unit – the                         |            |  |
|          |         | Electronic circuits. | reen - the difference between a                                   |            |  |
|          |         |                      | puter screen and a TV screen -                                    |            |  |
|          |         |                      | the output port.                                                  |            |  |
| vacation |         |                      | 7- Memory - main<br>nemory - read-only memory -                   |            |  |
|          |         |                      | id-write memory - comparison                                      |            |  |
|          |         |                      | veen them - auxiliary memories                                    |            |  |
|          |         |                      | d the difference between them                                     |            |  |
|          |         |                      | and main memory.<br>8- The central processing                     |            |  |
|          |         |                      | init - the microprocessor - its                                   |            |  |
|          |         |                      | definition - a block diagram                                      |            |  |
|          |         |                      | lowing the architecture of the                                    |            |  |
|          |         |                      | microprocessor - the 8085<br>croprocessor - a diagram of the      |            |  |
|          |         |                      | minals and its block diagram -                                    |            |  |
|          |         |                      | ata bus buffers - address bus                                     |            |  |
|          |         |                      | fers and a comparison between them.                               |            |  |
|          |         |                      | 9- Public Records – Register                                      |            |  |
|          |         |                      | A (Accumulator) -                                                 |            |  |
|          |         |                      | ithmetic and Logic Unit - Flags                                   |            |  |
|          |         |                      | Record -<br>5 microprocessor notification -                       |            |  |
|          |         |                      | Computational example                                             |            |  |
|          |         |                      | o determine the status of each                                    |            |  |
|          |         |                      | flag and its interpretation<br>tatus-Utility of Flags Register.   |            |  |
| 1        | 3 hours |                      | 10- The information of the                                        |            |  |
| 2        | 3 hours |                      | Z-80 microprocessor and its                                       |            |  |
| 3        | 3 hours |                      | parison with the information of                                   |            |  |
| 4        | 3 hours |                      | the 8085 microprocessor -<br>arithmetic example - the PC          |            |  |
| 5        | 3 hours |                      | rogram counter, the SP stack                                      |            |  |
| 5<br>6   | 3 hours |                      | nter - the instruction register -                                 |            |  |
| 0<br>7   |         |                      | the instruction decoder - the                                     |            |  |
| 8        | 3 hours |                      | control unit.<br>11- Instructions for the                         |            |  |
| o<br>9   | 3 hours |                      | 8085-Z80 microprocessor -                                         |            |  |
|          | 3 hours |                      | nemonic codes used - machine                                      |            |  |
| 10       | 3 hours |                      | nguage - comparison between                                       |            |  |

| 11 | 3 hours | hem - how to extract codes in                                    |  |
|----|---------|------------------------------------------------------------------|--|
| 12 | 3 hours | machine language from the                                        |  |
| 13 | 3 hours | instruction table.                                               |  |
|    |         | 12- Data transfer group                                          |  |
| 14 | 3 hours | nstructions and their types -<br>olving examples - writing an    |  |
| 15 | 3 hours | application program.                                             |  |
|    |         | 13- Input and output                                             |  |
|    |         | tructions and their relationship                                 |  |
|    |         | ata transfer group instructions -                                |  |
|    |         | examples                                                         |  |
|    |         | Applied.                                                         |  |
|    |         | 14- A group of arithmetic                                        |  |
|    |         | nstructions and their types -                                    |  |
|    |         | pplied examples - their use in                                   |  |
|    |         | lifying the digital signal with an                               |  |
|    |         | applied example.                                                 |  |
|    |         | A group of logical instructions                                  |  |
|    |         | their types - applied examples -                                 |  |
|    |         | nd their use in solving digital                                  |  |
|    |         | circuits.                                                        |  |
|    |         | 15- A group of branching<br>nstructions and their types -        |  |
|    |         | onditional and unconditional                                     |  |
|    |         | and their dependence on                                          |  |
|    |         | lags - applied examples - the                                    |  |
|    |         | importance of these                                              |  |
|    |         | Group in writing programs.                                       |  |
|    |         |                                                                  |  |
|    |         |                                                                  |  |
|    |         |                                                                  |  |
|    |         | 1- A group of control<br>tructions - their relationship to       |  |
|    |         | operating keys - and how they                                    |  |
|    |         | er from the rest of the previous                                 |  |
|    |         | instructions.                                                    |  |
|    |         | 2-3- Programs for                                                |  |
|    |         | performing mathematical                                          |  |
|    |         | rations: addition - subtraction -                                |  |
|    |         | ltiplication - division - what is                                |  |
|    |         | ant by addressing and its types                                  |  |
|    |         | in the 8085 processor                                            |  |
|    |         | 4- The stages of executing                                       |  |
|    |         | h instruction - the instruction                                  |  |
|    |         | ycle - the machine cycle - the<br>iming chart for executing an   |  |
|    |         | ruction (an instruction to store                                 |  |
|    |         | contents of the accumulator in a                                 |  |
|    |         | emory location, for example) -                                   |  |
|    |         | the microprocessor reads data                                    |  |
|    |         | in memory.                                                       |  |
|    |         | 5- Configure repetition                                          |  |
|    |         | ps - time delay loops - one loop -                               |  |
|    |         | loops - three loops - application                                |  |
|    |         | programs for each of them.                                       |  |
|    |         | 6- Generating pulses with                                        |  |
|    |         | equired frequency and a known                                    |  |
|    |         | luty cycle compared to pulse                                     |  |
|    |         | enerators that use integrated                                    |  |
|    |         | circuits.                                                        |  |
|    |         | 7- Practical examples                                            |  |
|    |         | wing how to exploit time delay<br>pps in industrial and domestic |  |
|    |         | fields.                                                          |  |
|    |         |                                                                  |  |
|    |         | 8- Write a program for an                                        |  |
|    |         | nding counter - with an applied                                  |  |

| ntdown timer - with an applied<br>example.<br>10- Write a program for an<br>cending/descending counter -<br>with an applied example.<br>11- Microprocessor 8086 -<br>pecifications - architecture -<br>terminal diagram.                                                                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>12- Types of addressing for</li> <li>e 8086 microprocessor - data<br/>transfer instructions -</li> <li>multiplication and division</li> <li>structions - examples of other<br/>instructions.</li> <li>13- A comparison between</li> <li>sht-threaded microprocessors</li> <li>(such as the 8085 (Z80) and</li> </ul> |  |
| een-threaded ones, such as the<br>8086.<br>14- Microprocessors with<br>ranks and their most prominent<br>ecifications - microprocessors<br>used in Pentium computers.<br>15- A general review of the<br>curriculum vocabulary.                                                                                                |  |

| 17. Course Structure:<br>communications (second stage) |                                                                                      |                                                                                               |                                                                                                                                                                                                                                    |                                  |                           |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|--|
| Week                                                   | Hours                                                                                | Required<br>Learning<br>Outcomes                                                              | Unit or subject name                                                                                                                                                                                                               | Learning<br>method               | Evaluation<br>method      |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                   | 3 hours<br>3 hours<br>3 hours<br>3 hours<br>3 hours<br>3 hours<br>3 hours<br>3 hours | -: Providing the<br>student with basic<br>information about<br>telecommunications<br>systems. | 1- BSF)-(RC))- (LPF)-<br>(HPF)-(BPF) Filters<br>2-(BSF) - LPF))-(HPF)-<br>(BPF Active filters<br>3- Modulation,types,AM<br>modulation,wave analysis<br>4- Spectrum<br>frequency,power<br>distributed,calculate<br>modulation index | lecture<br>And the<br>laboratory | Oral and<br>written tests |  |

| 9       | 3 hours | 2-Systems and        | 5- Types of AM with its                                  |  |
|---------|---------|----------------------|----------------------------------------------------------|--|
| 10      | 3 hours | structures of radio, | spectrum                                                 |  |
| 11      | 3 hours | television and       | 6- Types of modulation used                              |  |
| 12      | 3 hours | telephone systems.   | to generate AM<br>7- Detector of AM-disturtion           |  |
| 13      | 3 hours |                      | in demodulation circuits-                                |  |
| 14      | 3 hours |                      | Envelope Detector –                                      |  |
| 15      | 3 hours |                      | Synchronous Detector -                                   |  |
| 10      | 5 nours |                      | ((AGC                                                    |  |
|         |         | 3-Methods of         | 8- Block diagram for                                     |  |
|         |         | transferring         | transmiting and receiving<br>AM-sensitivity of receiving |  |
|         |         | information in       | .device                                                  |  |
|         |         | communications       | 9- FM modulation-PM                                      |  |
|         |         |                      | modulation-mathematic                                    |  |
|         |         | systems, their       | analysis for modulated                                   |  |
|         |         | specifications,      | waves-modulaion ratio-<br>.frequency deviation           |  |
|         |         | features, and the    | 10- The width of spectrum                                |  |
|         |         | operations that take | frequency for FM and PM                                  |  |
|         |         | place on them.       | 11- Types of FM generation-                              |  |
|         |         |                      | (Secttreo FM)- Stero                                     |  |
|         |         |                      | 12- Some types of Detector<br>of FM                      |  |
|         |         |                      | 13- Coding-Sampling-                                     |  |
|         |         |                      | Quantization-coding                                      |  |
|         |         |                      | .transform                                               |  |
|         |         |                      | 14- PM-PCM-PPM-PDM and PAM                               |  |
|         |         |                      | 15- Multiplexing) –(FDM) –                               |  |
|         |         |                      | (TDM)                                                    |  |
| acation |         |                      |                                                          |  |
|         |         |                      | 1- PSK-FSK-ASK                                           |  |
|         |         |                      | modulation                                               |  |
|         |         |                      | 2- Transmission                                          |  |
|         |         |                      | information- signal to noise                             |  |
|         |         |                      | ratio-noise                                              |  |
|         |         |                      | 3- Mobile-FDMA-TDMA-<br>CDMA                             |  |
|         |         |                      | 4- Teleprinters-telegraph                                |  |
|         |         |                      |                                                          |  |
|         |         |                      | 5- FaximileTransmission) –                               |  |
|         |         |                      | (Fas-Receiver)-(Telex)<br>6- Optic fiber-types-          |  |
| 1       | 3 hours |                      | properties                                               |  |
| 2       | 3 hours |                      | 7- Types of antenna-                                     |  |
| 3       | 3 hours |                      | fundamentals of antenna-<br>factor of antenna            |  |
| 4       | 3 hours |                      | 8- Propogation of radio                                  |  |
| 5       | 3 hours |                      | signal                                                   |  |
| 6       | 3 hours |                      | 9- Some types of antenna                                 |  |
| 7       | 3 hours |                      | 10- Using of Microwave in                                |  |
| 8       | 3 hours |                      | communications<br>11- Satallite-properties and           |  |
| 9       | 3 hours |                      | advances-receiving and                                   |  |
| 10      | 3 hours |                      | transmiting-orbits of                                    |  |
| 11      | 3 hours |                      | satellite-multiple access                                |  |
| 12      | 3 hours |                      | 12- Microwaves-                                          |  |
| 13      | 3 hours |                      | generations-frequency                                    |  |

|  | 3 hours<br>3 hours | 13- Mobile-introduction-<br>principles-technics-wireless<br>technics<br>14- GSM-functions-structure<br>15- Thuraya device |
|--|--------------------|---------------------------------------------------------------------------------------------------------------------------|
|--|--------------------|---------------------------------------------------------------------------------------------------------------------------|

| Electronic measuring devices (second stage) |         |                                        |                                                                   |                    |                      |  |  |
|---------------------------------------------|---------|----------------------------------------|-------------------------------------------------------------------|--------------------|----------------------|--|--|
| Week                                        | Hours   | Required<br>Learning<br>Outcomes       | Unit or subject name                                              | Learning<br>method | Evaluation<br>method |  |  |
| 1                                           | 3 hours | Student acquisition                    | 1- Metrology - the                                                |                    |                      |  |  |
| 2                                           | 3 hours | Skill in the field                     | iternational system of units of                                   | lecture            | Oral and             |  |  |
| 2<br>3                                      | 3 hours | Use of devices                         | neasurement - basic units of                                      | iccure             |                      |  |  |
|                                             |         | Measurement                            | easurement - derived units of<br>asurement - decimal multiples    | And the            |                      |  |  |
| 4                                           | 3 hours | e                                      | and parts of multiples -                                          | And the            | written tests        |  |  |
| 5                                           | 3 hours | And electrical                         | easurement errors - examples                                      |                    |                      |  |  |
| 6                                           | 3 hours | different.                             | 2- The galvanometer -                                             | laboratory         |                      |  |  |
| 7                                           | 3 hours | And knowledge                          | sensitivity of the galvanometer                                   |                    |                      |  |  |
| 8                                           | 3 hours | Basic ingredients<br>for these devices | he final deviation - the kinetic<br>havior - the decay mechanism. |                    |                      |  |  |
| 9                                           | 3 hours | And how                                | Examples                                                          |                    |                      |  |  |
| 10                                          | 3 hours | Use it                                 | 3- Classification of                                              |                    |                      |  |  |
| 10                                          | 3 hours | In the correct way                     | heasuring devices - Indicating                                    |                    |                      |  |  |
| 11<br>12                                    |         | And away from the                      | ices and the foundations relied                                   |                    |                      |  |  |
|                                             | 3 hours | risks in working on it.                | n - Types of effective torques -                                  |                    |                      |  |  |
| 13                                          | 3 hours | And get to know                        | ection torque - Control torque -<br>Decreasing torque             |                    |                      |  |  |
| 14                                          | 3 hours | How to calibrate                       | 4- Moving coil measuring                                          |                    |                      |  |  |
| 15                                          | 3 hours | Measuring devices                      | evices – installation – working                                   |                    |                      |  |  |
|                                             |         | Analogue                               | nciple – moment equations – –                                     |                    |                      |  |  |
|                                             |         | And digital. And also                  | advantages – disadvantages                                        |                    |                      |  |  |
|                                             |         | Recognition<br>Factors affecting       | leasuring devices with a moving                                   |                    |                      |  |  |
|                                             |         | reading accuracy and                   | on - attractive type - repulsive<br>type - installation - working |                    |                      |  |  |
|                                             |         | how                                    | principle - advantages -                                          |                    |                      |  |  |
|                                             |         | Device selection                       | disadvantages.                                                    |                    |                      |  |  |
|                                             |         | appropriate to measure                 | 6- Types of resistors in                                          |                    |                      |  |  |
|                                             |         | So that the student can                | ms of their values - Methods of                                   |                    |                      |  |  |
|                                             |         | use the devices                        | easuring electrical resistance -<br>meter and voltmeter method -  |                    |                      |  |  |
|                                             |         | Different                              | immeter device - Series type -                                    |                    |                      |  |  |
|                                             |         | measurements after                     | Parallel type - Examples                                          |                    |                      |  |  |
|                                             |         | graduation with a                      | 7- The micrometer                                                 |                    |                      |  |  |
|                                             |         | picture<br>Correct in                  | evice for measuring insulation<br>and high-value resistances -    |                    |                      |  |  |
|                                             |         | work fields                            | omponents - electrical circuit                                    |                    |                      |  |  |
|                                             |         | different.                             | diagram - working principle                                       |                    |                      |  |  |
|                                             |         |                                        | 8- Direct current                                                 |                    |                      |  |  |
|                                             |         |                                        | lges - Whetstone direct current                                   |                    |                      |  |  |
|                                             |         |                                        | bridge to measure unknown                                         |                    |                      |  |  |
|                                             |         |                                        | sistance - working principle -<br>te of equilibrium - unbalance - |                    |                      |  |  |
|                                             |         |                                        | lerivation of the equilibrium                                     |                    |                      |  |  |
|                                             |         |                                        | ation for the bridge - examples -                                 |                    |                      |  |  |
| acation                                     |         |                                        | double Kelvin bridge                                              |                    |                      |  |  |
| acutoff                                     |         |                                        | 9- Direct current<br>meter - resistance in parallel -             |                    |                      |  |  |

|    | 1       |                                    |
|----|---------|------------------------------------|
|    |         | erivation of the equation for      |
|    |         | culating resistance in parallel -  |
|    |         | nulti-range ammeter - safety       |
|    |         | asures when using - examples       |
|    |         | 10 - Direct current                |
|    |         | roltmeter - series resistance -    |
|    |         | erivation of the equation for      |
|    |         | ulating series resistance - multi- |
|    |         | ge voltmeter - safety measures     |
|    |         | when using - examples              |
|    |         | 11- A multimeter – a               |
|    |         | erential diagram - a circuit for a |
|    | 2.1     | urrent and voltage meter - a       |
|    | 3 hours | rcuit for a single-range direct    |
| 1  | 3 hours | irrent, voltage and resistance     |
| 2  | 3 hours | er - calibration of direct current |
|    |         | rices - calibration of voltmeters  |
| 3  | 3 hours | and ammeters.                      |
| 4  | 3 hours | 12- Wayne bridge to                |
| 5  | 3 hours | heasure frequency, unbalance       |
|    |         | ses, how to balance the bridge     |
| 6  | 3 hours | 13- Devices for                    |
| 7  | 3 hours | heasuring alternating current,     |
| 8  |         | ctrodynamometer, structures,       |
|    | 3 hours | moment equation                    |
| 9  | 3 hours | 14- Mobile steel measuring         |
| 10 | 3 hours | devices, structures, moment        |
| 11 |         | equations, advantages and          |
|    | 3 hours | disadvantages.                     |
| 12 | 3 hours | 15- Uniform type measuring         |
| 13 | 3 hours | ces - full-wave integrator - half- |
| 14 |         | wave integrator - examples.        |
|    | 3 hours |                                    |
| 15 |         | 1- T he use of                     |
|    |         | trodynamometers in measuring       |
|    |         | le-phase power, structures, and    |
|    |         | he deflection angle equation.      |
|    |         | 2- Frequency scale,                |
|    |         | compositions and working           |
|    |         | principle                          |
|    |         | 3- Thermal devices,                |
|    |         |                                    |
|    |         | thermocouple device 0 for          |
|    |         | easuring non-granular shapes.      |
|    |         | 4- Signal oscilloscope, block      |
|    |         | diagram, cathode ray diode,        |
|    |         | assembly, screen, factors for      |
|    |         | ecting screens, types of screens,  |
|    |         | optical grid.                      |
|    |         | 5- Vertical deflection system,     |
|    |         | ctional diagram, input function,   |
|    |         | nuator, vertical amplifier, delay  |
|    |         | e, function and types of delay     |
|    |         | line.                              |
|    |         | 6-7- Horizontal deflection         |
|    |         | rstem, basic sweep generator,      |
|    |         | ep synchronization, mug sweep,     |
|    |         | horizontal amplifier, signal       |
|    |         | cilloscope figures, passive and    |
|    |         | ctive voltage figures, current     |
|    |         | figures, high voltage figures,     |
|    |         | ajous shapes, phase calculation,   |
|    |         | frequency calculation              |
|    |         | 8- The dual-beam signal            |
|    |         | naker, your head is the signal     |
|    |         | keeper.                            |
|    |         | 9- Electronic measuring            |
|    | 1       | ices, electronic voltmeter, basic  |
|    |         |                                    |

| transistor circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10- Considerations for<br>bsing an analog voltmeter, input<br>edance, voltage range, decibels,<br>ensitivity, versus tape width,<br>measuring current.<br>11-12- Digital voltmeter,<br>neral specifications, regression<br>e, integration type, continuous<br>uilibrium type, and successive<br>approximation type.<br>13-14-15- Simple frequency<br>bunter, display counters, time<br>e, signal processing, measuring<br>te expansion of the frequency<br>nge of the counter, automatic<br>counters and calculators. |  |

# 19. Course Structure:

| Audio and visual devices (second stage)                           |                                                                                                                                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                           |  |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|--|--|--|
| Week                                                              | Hours                                                                                                                                                             | Required<br>Learning<br>Outcomes | Unit or subject name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Learning<br>method               | Evaluation<br>method      |  |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 3 hours<br>3 hours |                                  | <ul> <li>1- How to use the measuring evices used in the audiology laboratory</li> <li>2- Identifying the stages the television set (reading the up) and placing the dots on the television set</li> <li>3-4-5-6The power</li> <li>supply stage (measuring the uply voltage to operate the TV - w to convert it from AC to DC - Irawing signals at inspection points using an oscilloscope - suring the voltages entering the illator - measuring the voltages ming out of the power supply - awing the signals Out of phase</li> </ul> | lecture<br>And the<br>laboratory | Oral and<br>written tests |  |  |  |

| 14       | 3 hours | using the oscilloscope                                              |  |
|----------|---------|---------------------------------------------------------------------|--|
| 15       | 3 hours | Osloscope                                                           |  |
|          |         | 7-8- Horizontal deflection<br>ase. Measurement of voltages          |  |
|          |         | ntering and exiting the phase                                       |  |
|          |         | 9-10- The vertical                                                  |  |
|          |         | eflection phase measures the                                        |  |
|          |         | tages entering and exiting the                                      |  |
|          |         | phase<br>11-12- Drawing the signals                                 |  |
|          |         | ering and exiting the horizontal                                    |  |
|          |         | vertical stages using the signal                                    |  |
|          |         | oscilloscope device                                                 |  |
|          |         | 13- Create an RF stage for                                          |  |
|          |         | e stage and measure the input<br>tages and plot the input signals   |  |
|          |         | ng a signal oscilloscope device.                                    |  |
|          |         | 14- Create an RF stage for                                          |  |
|          |         | the stage and measure the                                           |  |
|          |         | utgoing voltages and plot the                                       |  |
|          |         | coming signals using a signal<br>cilloscope and an oscilloscope     |  |
|          |         | device.                                                             |  |
|          |         | 15- Make an IF stage for                                            |  |
|          |         | e stage and measure the input                                       |  |
|          |         | tages and plot the input signals                                    |  |
|          |         | ng a signal oscilloscope device.                                    |  |
| vacation |         |                                                                     |  |
|          |         | 1- Make an IF phase (for the                                        |  |
|          |         | ase) and measure the outgoing                                       |  |
|          |         | bltages and plot the incoming<br>hals using a signal oscilloscope.  |  |
|          |         | 2- Create an AGC stage                                              |  |
|          |         | for                                                                 |  |
|          |         | stage and measure the input vol                                     |  |
|          |         | iges and plot the input signals<br>ng a signal oscilloscope device. |  |
|          |         | 3- Create an AGC phase                                              |  |
|          |         | pr the phase and measure the                                        |  |
|          |         | utgoing voltages and plot the                                       |  |
|          |         | coming signals using a signal                                       |  |
|          | 2 hours | oscilloscope.<br>4-5- The stage of image                            |  |
|          | 3 hours | pontrol operations, measuring                                       |  |
| 1        | 3 hours | but input voltages and plotting                                     |  |
| 2        | 3 hours | signals entering the stage using                                    |  |
| 3        | 3 hours | a signal oscilloscope and an                                        |  |
| 4        | 3 hours | oscilloscope device.<br>6-7- The stage of image                     |  |
| 5        | 3 hours | trol operations, measuring the                                      |  |
| 6        | 3 hours | tput voltages of the equipment                                      |  |
| 0<br>7   | 3 hours | plotting the signals coming out                                     |  |
| 8        | 3 hours | of the stage using a signal                                         |  |
|          |         | oscilloscope device.<br>8-9 - Sound stage,                          |  |
| 9        | 3 hours | easuring the input and output                                       |  |
| 10       | 3 hours | bltages of the equipment, and                                       |  |
| 11       | 3 hours | tting the signals using a signal                                    |  |
| 12       | 3 hours | lloscope, an oscilloscope device.                                   |  |
| 13       | 3 hours | 10-11- Color amplifiers,<br>neasuring supply voltages for           |  |
| 14       | 3 hours | iput and output, and plotting                                       |  |
| 15       |         | ignals using an oscilloscope.                                       |  |
| 13       |         | 12-13- How to control the                                           |  |
|          |         | ensity of lighting. Measure the                                     |  |
|          |         | upply voltages for input and                                        |  |

|                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         | out while plotting signals using<br>a signal oscilloscope.<br>14-15- Identifying modern<br>vices and keeping up with the<br>elopment taking place in them<br>in terms of installation |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                                       |                            |
| 1 Cou                                                                                                                                                                              | rse Evaluatio                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                       |                                                                                                                                                                                       |                            |
|                                                                                                                                                                                    | n as follows:                                                                                                                                                                                                                                        | /11                                                                                                                                                                                                                     |                                                                                                                                                                                       |                            |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                      | • •                                                                                                                                                                                                                     |                                                                                                                                                                                       | her in the first or second |
| 0                                                                                                                                                                                  |                                                                                                                                                                                                                                                      | grades is as follow                                                                                                                                                                                                     | VS                                                                                                                                                                                    |                            |
|                                                                                                                                                                                    | he first stage<br>ircuits: 50% =                                                                                                                                                                                                                     | 20 practical + $20$                                                                                                                                                                                                     | theoretical + 10 year's                                                                                                                                                               | work + final exam 50% =    |
| 40 n + 10 n.                                                                                                                                                                       |                                                                                                                                                                                                                                                      | - practical · Lo                                                                                                                                                                                                        |                                                                                                                                                                                       |                            |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         | 50% = 20 practical + 2                                                                                                                                                                | 20 theoretical + 10 year's |
|                                                                                                                                                                                    | l exam 50% =                                                                                                                                                                                                                                         |                                                                                                                                                                                                                         | ntinuous avaluation r                                                                                                                                                                 | 004 alastronis workshar    |
|                                                                                                                                                                                    | ectrical works                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                       | nunuous evaluation: 5                                                                                                                                                                 | 50% electronic workshop    |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                       | exam is 30% + the year                                                                                                                                                                | 's work is 20% = the final |
| exam is 50%                                                                                                                                                                        | •                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         | -                                                                                                                                                                                     |                            |
| *There are                                                                                                                                                                         | subjects that e                                                                                                                                                                                                                                      | end with the first                                                                                                                                                                                                      | semester and begin wit                                                                                                                                                                | th another subject         |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                                       |                            |
| 2 Learn                                                                                                                                                                            | ing and Teac                                                                                                                                                                                                                                         | hing Resources                                                                                                                                                                                                          |                                                                                                                                                                                       |                            |
|                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                    | hing Resources<br>Edward Hughes)                                                                                                                                                                                        |                                                                                                                                                                                       |                            |
| 1- Electrica<br>2- Basic Cir                                                                                                                                                       | l Technology()<br>rcuit(A.M.Bro                                                                                                                                                                                                                      | Edward Hughes)<br>oks).pergaman p                                                                                                                                                                                       | •                                                                                                                                                                                     |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc                                                                                                                                        | l Technology()<br>rcuit(A.M.Bro<br>tion To Electr                                                                                                                                                                                                    | Edward Hughes)<br>oks).pergaman p<br>ic Circuit                                                                                                                                                                         | •                                                                                                                                                                                     |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany                                                                                                                           | l Technology()<br>rcuit(A.M.Broo<br>tion To Electr<br>wltz) John Wil                                                                                                                                                                                 | Edward Hughes)<br>oks).pergaman p<br>ic Circuit<br>lley .                                                                                                                                                               | ress.                                                                                                                                                                                 |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany                                                                                                                           | l Technology()<br>rcuit(A.M.Broo<br>tion To Electr<br>wltz) John Wil<br>ectrical Engine                                                                                                                                                              | Edward Hughes)<br>oks).pergaman p<br>ic Circuit                                                                                                                                                                         | ress.                                                                                                                                                                                 |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany<br>4- Basic Ele<br>Rlgginboth<br>1- Prog<br>Impl                                                                          | l Technology()<br>rcuit(A.M.Broo<br>tion To Electri<br>wltz) John Wil<br>ectrical Engine<br>an).Graw<br>grammable C<br>lementation, S                                                                                                                | Edward Hughes)<br>oks).pergaman p<br>ic Circuit<br>lley .<br>eering(Fitzgerald<br>ontrollers Theo<br>second Edition, b                                                                                                  | ress.<br>&<br>ry a<br>y L.                                                                                                                                                            |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany<br>4- Basic Ele<br>Rlgginboth<br>1- Prog<br>Impl<br>Brya<br>Indu                                                          | l Technology()<br>rcuit(A.M.Brod<br>tion To Electri<br>wltz) John Wil<br>ectrical Engine<br>an).Graw<br>grammable C<br>lementation, S<br>an & E. A. B<br>ustrial Text (                                                                              | Edward Hughes)<br>oks).pergaman p<br>ic Circuit<br>ley .<br>eering(Fitzgerald<br>ontrollers Theo<br>second Edition, b<br>Gryan, © 1988, 1<br>Company Publis                                                             | ress.<br>&<br>y L.<br>997                                                                                                                                                             |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany<br>4- Basic Ele<br>Rlgginboth<br>1- Prog<br>Impl<br>Brya<br>Indu<br>Indu                                                  | I Technology()<br>rcuit(A.M.Broo<br>tion To Electri<br>wltz) John Wil<br>ectrical Engine<br>an).Graw<br>grammable C<br>lementation, S<br>an & E. A. B<br>Istrial Text Co                                                                             | Edward Hughes)<br>oks).pergaman p<br>ic Circuit<br>lley .<br>cering(Fitzgerald<br>controllers Theo<br>Second Edition, b<br>Gryan, © 1988, 1<br>Company Publis<br>ompany.                                                | ress.<br>&<br>ry a<br>y L.<br>997<br>hed                                                                                                                                              |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany<br>4- Basic Ele<br>Rlgginboth<br>I- Prog<br>Impl<br>Brya<br>Indu<br>2- MIT                                                | I Technology()<br>rcuit(A.M.Brod<br>tion To Electri<br>wltz) John Wil<br>ectrical Engine<br>an).Graw<br>grammable C<br>lementation, S<br>an & E. A. B<br>Istrial Text Co<br>SUBISHI E                                                                | Edward Hughes)<br>oks).pergaman p<br>ic Circuit<br>lley .<br>cering(Fitzgerald<br>controllers Theo<br>Second Edition, b<br>Gryan, © 1988, 1<br>Company Publis<br>ompany.                                                | ress.<br>&<br>y L.<br>997<br>hed<br>K-TF                                                                                                                                              |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany<br>4- Basic Ele<br>Rlgginboth<br>I- Prog<br>Impl<br>Brya<br>Indu<br>2- MIT<br>BEG<br>num                                  | I Technology()<br>rcuit(A.M.Brod<br>tion To Electric<br>wltz) John Wil<br>ectrical Engine<br>an).Graw<br>grammable C<br>lementation, S<br>an & E. A. B<br>Istrial Text Co<br>istrial Text Co<br>SUBISHI E<br>G-E, USER'S<br>Iber: JY997D(            | Edward Hughes)<br>oks).pergaman p<br>ic Circuit<br>lley .<br>cering(Fitzgerald<br>controllers Theo<br>Second Edition, b<br>Gryan, © 1988, 1<br>Company Publis<br>ompany.                                                | ress.<br>&<br>&<br>y L.<br>997<br>hed<br>K-TF<br>Man                                                                                                                                  |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany<br>4- Basic Ele<br>Rlgginboth<br>I- Prog<br>Impl<br>Brya<br>Indu<br>2- MIT<br>BEG<br>num                                  | l Technology()<br>rcuit(A.M.Brod<br>tion To Electri<br>wltz) John Wil<br>ectrical Engine<br>an).Graw<br>grammable C<br>lementation, S<br>an & E. A. B<br>ustrial Text Co<br>Istrial Text Co<br>SUBISHI E<br>G-E, USER'S                              | Edward Hughes)<br>oks).pergaman p<br>ic Circuit<br>lley .<br>cering(Fitzgerald<br>controllers Theo<br>Second Edition, b<br>Gryan, © 1988, 1<br>Company Publis<br>ompany.<br>CLECTRIC, FY<br>MANUAL, 1                   | ress.<br>&<br>&<br>y L.<br>997<br>hed<br>K-TF<br>Man                                                                                                                                  |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany<br>4- Basic Ele<br>Rigginboth<br>1- Prog<br>Impl<br>Brya<br>Indu<br>2- MIT<br>BEG<br>num<br>E, Ju                         | I Technology(<br>rcuit(A.M.Brod<br>tion To Electri<br>wltz) John Wil<br>ectrical Engine<br>an).Graw<br>grammable C<br>lementation, S<br>an & E. A. B<br>Istrial Text Co<br>Istrial Text Co<br>SUBISHI E<br>G-E, USER'S<br>Iber: JY997D(<br>une 2015. | Edward Hughes)<br>oks).pergaman p<br>ic Circuit<br>lley .<br>cering(Fitzgerald<br>controllers Theo<br>Second Edition, b<br>Gryan, © 1988, 1<br>Company Publis<br>ompany.<br>CLECTRIC, FY<br>MANUAL, 1                   | ress.<br>&<br>y L.<br>997<br>hed<br>K-TF<br>Man<br>evisi                                                                                                                              |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany<br>4- Basic Ele<br>Rigginboth<br>1- Prog<br>Impl<br>Brya<br>Indu<br>2- MIT<br>BEG<br>num<br>E, Ju<br>1- جاسم<br>1- جاسم   | ا Technology()<br>rcuit(A.M.Brod<br>tion To Electri<br>wltz) John Wil<br>ectrical Engine<br>an).Graw<br>grammable C<br>lementation, S<br>an & E. A. B<br>ustrial Text Co<br>SUBISHI E<br>G-E, USER'S<br>uber: JY997D()<br>une 2015.<br>عد            | Edward Hughes)<br>oks).pergaman p<br>ic Circuit<br>lley .<br>cering(Fitzgerald<br>ontrollers Theo<br>becond Edition, b<br>Gryan, © 1988, 1<br>Company Publis<br>ompany.<br>CLECTRIC, FX<br>MANUAL, 1<br>02901 Manual r  | ress.<br>&<br>y 2<br>y L.<br>997<br>hed<br>K-TF<br>Man<br>evisi                                                                                                                       |                            |
| 1- Electrica<br>2- Basic Cir<br>3- Introduc<br>(M.Romany<br>4- Basic Ele<br>Rigginboth<br>1- Prog<br>Impl<br>Brya<br>Indu<br>2- MIT<br>BEG<br>num<br>E, Ju<br>1- مري<br>D.C Motors | ا Technology()<br>rcuit(A.M.Brod<br>tion To Electri<br>wltz) John Wil<br>ectrical Engine<br>an).Graw<br>grammable C<br>lementation, S<br>an & E. A. B<br>ustrial Text Co<br>SUBISHI E<br>G-E, USER'S<br>aber: JY997D(<br>une 2015.                   | Edward Hughes)<br>oks).pergaman p<br>ic Circuit<br>lley .<br>cering(Fitzgerald<br>controllers Theo<br>Second Edition, b<br>Gryan, © 1988, 1<br>Company Publis<br>Ompany.<br>CLECTRIC, FX<br>MANUAL, 1<br>02901 Manual r | ress.<br>&<br>&<br>y L.<br>997<br>hed<br>K-TF<br>Man<br>evisi                                                                                                                         |                            |

| http://electrical-engineering-portal.com/ |  |
|-------------------------------------------|--|