
3

Southern Technical University

Amara Technical Institute

Computer Systems Dept

Class: Second Year

22019-2020

2
 Chapter Two Visual Basic’s Visual Nature

CHAPTER TWO

Visual Basic's Visual Nature

Introduction

Visual Basic is more than just a programming language. The

secret to Visual Basic is in its name: visual. Older programming

languages, such as BASIC, worked well in a text-only computing

environment, but such languages do not support the graphical interface

needed for today's computers. Visual Basic programming process

requires interacting with the Visual Basic visual environment as we

will see in this chapter.

2-1: Starting Visual Basic.

After installing Microsoft Visual Studio 6.0, choose Visual

Basic 6.0 from the start menu. As soon as we start Visual Basic, the

Application wizard is there to help. The New Project dialog box,

shown in Figure (2-1) will appear. Create a standalone program by

selecting the Standard EXE icon. The icon is named to represent the

resulting application's filename extension (.exe for executable) if you

compile the application you create. Even if you will not be compiling

your application right away, the Standard EXE icon is the one you'll

23

32
 Chapter Two Visual Basic’s Visual Nature

choose most of the time while learning Visual Basic. A standard EXE

application is an application that you can compile or run interpretively.

Figure(2-1): The New Project dialog box

2-2: Visual Basic environment

The Visual Basic environment contains several windows with

which you will work as you build application. Figure (2-2) illustrates

the major parts of the Visual Basic screen which consists of the

following windows:

24

32 Chapter Two Visual Basic’s Visual Nature

1. Form Window

2. Toolbox Window

3. Properties Window

4. Code Window

5. Form Layout Window

6. Project Explorer Window

7. Menu Bar

8. Tool Bar

Menu Bar Tool Bar

Project

Form Window

Tool
Code Window

Box

Window

Figure(2-2) Visual Basic environment
25

Project
Window

Properties
Window

Form
Layout

Window

32
 Chapter Two Visual Basic’s Visual Nature

2-2-1: The Form window

Most of your work goes on inside the Form window. You'll

design all your application's forms, which are the background windows

that your users see, in the central editing area where the Form window

appears. You can resize the Form window to make the windows you

create in your applications as large or small as needed. (Scrollbars

appear to let you scroll the Form window if you need to see parts of the

forms that run off the screen or underneath other Visual Basic

windows).

Keep in mind that an application may contain multiple forms;

you can display one or more of those forms in their own Form window

editing areas, as shown in Figure (2-3). The active form is the form

with the highlighted title bar in its window. Activate a form by clicking

anywhere within the window or on the title bar.

Figure(2-3): The Form

26

32
 Chapter Two Visual Basic’s Visual Nature

2-2-2: Toolbox window

The Toolbox window, typically called the toolbox, is a collection of

tools that act as a repository of controls you can place on a form. These

controls are dragged to the form window to perform a specific job.

Figure (2-4) shows the most common collection of toolbox tools that we

use. The function of each control tool is listed in the next page.

Pointer Picture Box

Label Box Text Box

Frame Command Button

Check Box Option Button

Combo Box List Box

Horizontal Scroll bar Vertical Scrollbar

Timer Drive List Box

Directory List Box File List Box

Shape Line

Image Box Database Manager

Object Linking

and Embedding

Figure(2-4): The Toolbox

27

32
 Chapter Two Visual Basic’s Visual Nature

1. The Pointer Tool

The pointer tool is the only toolbox item that is not a control. About the

only use for the pointer tool is to eliminate the crosshair mouse cursor

that appears when you select any of the other controls in the Toolbox

window.

2. Picture Box

This tool is used to view pictures in addition it can be a container for

another tools.

3. Label Box

The Label Control is one of the simplest controls to work with. With the

label control, you can add descriptive text to the form in any location by

using different styles and sizes of fonts.

4. Text Box

Unlike the Label Box, the user can change values within a text box

control. You can get answers from the user by using text box controls.

5. Frame

The Frame Control enables you to group items together on a form. The

group works almost like a miniform within the form.

6. Command Button

You have seen command buttons in almost every Windows program,

including Visual Basic and the currently-running application. Command

buttons give users pushbutton access to events that you place within an

application.

28

32
 Chapter Two Visual Basic’s Visual Nature

7. Check Box

Check box controls offer multiple-choice values from which the user

can select. Once the user selects one or more check boxes, your

program can analyze the selected check boxes and make decisions

based on those responses.

8. Option Buttons

Unlike check boxes, option buttons give your users a list from which to

choose, but they can select exactly one option out of the list.

9. Combo List Box

A Dropdown Combo list is one of three kinds of lists that you can

provide for your user. The Dropdown list saves room on the screen by

consuming only a single line on the form until the user opens the list to

display the rest of the items in it.

10. List Box

If you want users to select from a choice of options that you have

supplied and you want to prevent them from adding additional items to

the list, use list boxes.

11. Horizontal Scroll Bar

Use this tool to choose a value among range of values horizontally.

Also you can scroll the hide windows horizontally.

12. Vertical Scroll Bar

Use this tool to choose a value among range of values vertically. Also

you can scroll the hide windows vertically.

29

23
 Chapter Two Visual Basic’s Visual Nature

13. Timer

With this tool we can execute many operations in specific periods.

14. Drive List Box

If we use this tool we can list all the drivers found in the used computer.

15. Directory List Box

This tool lists all the directories (Folders) found in the specific driver.

16. File List Box

This tool lists all the files found in the specific folders.

17. Shapes

By using this tool we can draw many shapes (like circles , squares ,

rectangles, … etc) .

18. Line

By using this tool we can draw lines in the form.

19. Image Box

The image control is one of two controls (the picture box is the other)

that display graphic images.

20. Database manager

We use this tool when we want to build a database used in many

applications.

21. Object Linking and Embedding (OLE)

Allow this tool to receive many applications in the visual basic

environment (like MS Excel , MS Word , … etc).

30

23

2-2-3: Properties Window

A form can hold many controls.

As you add controls to a form, you

can select a control by clicking the

control. When you select a control,

the Properties window changes to

list every property related to that

control. So when you add a control

to a Visual Basic application, Visual

Basic sets the control's initial

property values. When you display

the Properties window for a control,

you can modify its property values.

Figure(2-5) beside shows a

Properties window listing some of

the properties for a Label control.

Notice that the name, type, and

description in the Property window

reflect the selected control. To

assign a value to a property, select

the property and type a new value.

Sometimes a drop-down list box

will appear when you can select one of an established set of values for

that property.

31

Figure(2-5): Properties Window

Chapter Two Visual Basic’s Visual Nature

23
 Chapter Two Visual Basic’s Visual Nature

Now we will list the wide used properties and its function:

 Alignment: Determines whether text on the control, such as a label

or command button, is left-justified, centered, or right-justified on

the control.

 Autosize: If True the control will take an automatic size to fit its
contents.

 BackColor: Specifies the color of the control's background, which

you select from a palette of colors when you open the property's

drop-down list box of colors.

 BorderStyle:Determines whether the control has a border around it.

 Caption: Lists the text displayed on the control appears in the form
window.

 Enabled: Either True if you want the control to respond to the user
or False if you want the control not to respond to the user.

 Font: Displays a Font dialog box from which you can set various
font properties, such as size and style, for a control's text.

 ForeColor: Specifies the color of the control's foreground, which

you select from a palette of colors when you open the property's

drop-down list box of colors.

 Height: Specifies the height of the control.

 Left: Indicates the starting from the left edge of the form where the

control appears. For a form, the Left property specifies the

distance from the left edge of the screen.

32

22
 Chapter Two Visual Basic’s Visual Nature

 MousePointer: Determines the shape of the mouse cursor when
the user moves the mouse over the control at runtime.

 Name: Specifies the name of the control that will appears in the code
window.

 Text: Lists the text displayed on the control. Used to input and output
texts.

 Top: Is the starting distance from the top edge of the form where

the control appears. For a form, the Top property describes distance

from the top edge of the screen.

 Visible: Set by a drop-down list box, this property is True if you

want the control to be visible on the form or False if you want the

control to be hidden from view.

 Width: Specifies the wide of the control.

 ScaleMode: This property can be found on the form properties

window. This property gives you a choice of eight choices

according to your measuring unit. These units are:

1. Twip = 0.567 cm

2. Point = 0.72 inch

3. Pixel = 1 form point

4. Character = 120 Twip vertically , 240 Twip Horizontally

5. Inch = 2.54 cm

6. Millimeter (mm)

7. Centimeter (cm)

8. User (the user can define it)

33

22
 Chapter Two Visual Basic’s Visual Nature

The default unit is "Twip" but the user can change it according to his

requirements. Put in your mind that the distance between any two points

on the form= 120 Twip= 6 Point = 8 Pixels = 1 character H, 0.5

Character V = 0.083 inch = 2.117 mm = 0.212 cm.

 ScaleWidth and ScaleHeight: Returns the width and the height

for the inter area for the form. The other two properties "Width" and

"Height" returns the width and the height for the outer area for the

form. So the default form dimensions will be:

Width=4800 Twip

ScaleWidth=4680 Twip

Hight=3600 Twip

ScaledHight=3090 Twip

Note

Do preface each object name you assign with a three-letter prefix

that describes the object. Then when you later look at the list of

objects, you not only know the object's name but also its type

(command button, text box, form, or whatever). Table(2-1) below

lists common prefixes used for Visual Basic object.

34

22
 Chapter Two Visual Basic’s Visual Nature

Prefix Object type

cbo Combo box

chk Check box

cmd Command button

dir Directory list box

drv Drive list box

fil File list box

fra Frame

frm Form

hsb Horizontal scrollbar

img Image

lbl Label
lin Line

lst List box

mnu Menu

ole OLE client

opt Option button

pic Picture box

shp Shape

tmr timer

Table(2-1): Common used prefix

2-2-4: Code window

Code Unlike most other programming languages, you do not have to

write much code as you develop applications in Visual Basic. The more

advanced the application needs to be, the more code you will have to

write to tie things together. The visual parts of Visual Basic, however,

eliminate much of the code that you would have to write if you were

still working in a text-based environment. Although you should not

35

22
 Chapter Two Visual Basic’s Visual Nature

expect to understand anything just yet, Figure (2-6) below shows a Code

window that contains two list box and Control Object Routine.

The right list box contains all control objects used in the project in

addition to form object. The left list box lists the Events which is a

callback mechanism. With it, objects can notify users that something

interesting has happened and table(2-2) shows the most common events

used in this book. The Control Object Routine is the program that we

will write it to perform a specific job. Usually the Visual Basic program

starts with the statement "Private Sub" and ends with the statement "End

Sub".

Control Objects

Events

Control Object Routine

Figure(2-6): The Code Window

36

22
 Chapter Two Visual Basic’s Visual Nature

Event Event Time

Click Clicking the mouse left button once

DblClick Clicking the mouse left button twice.

MouseMove Moving the mouse over the control object.

MouseDown During Clicked the mouse left button.

MouseUp Releasing the mouse left button.

DragDrop Moving the object using the mouse.

KeyPress Pressing any key from the keyboard.

KeyDown During key pressing and before releasing it.

KeyUp After pressing the key

Table(2-2): The most common code window events

Note

There are two other ways to display the Code window; you can select

View Code to see the window or you can also press F7 to display the

code.

2-2-5: Form Layout Window

The Form Layout window shown

in Figure(2-7) is an interesting little

window connected closely to the

Form window, because the Form

Layout window shows you a preview

of the Form window's location. Figure(2-7): Form Layout

37

22
 Chapter Two Visual Basic’s Visual Nature

If one or more forms appear in your Form window, thumbnail sketches

of those forms will also appear in the Form Layout window. The

window shows you where each of the forms will appear on the screen

when you user runs the application and, through using the program,

views the various forms.

2-2-6: Project Explorer Window

Use the Project window to manage

your application's components. As

Figure(2-8) shows, a windows program,

more accurately called an application,

can consist of several files. Before you

compile a Windows program, the number

of Visual Basic-related files can get even

more numerous. The Project window

enables you to manage all those

components and bring the component

you want to work with to the editing area

where you can work on it.
Figure(2-8): Project Explorer

2-2-7: Menu Bar

The top of the screen contains the menu bar and toolbar. The menu

bar (Shown in Figure (2-9)) contains lists of pull-down menus with

which you can manage your Visual Basic program. If you have

38

22
 Chapter Two Visual Basic’s Visual Nature

worked much with other Windows programs, you are already familiar

with the File, Edit, View, Tools, and Help menu bar commands

because they are similar across many Windows applications.

Figure below describes all the Visual Basic menu bar commands with

which you will work and their advantages.

Figure(2-9): Menu Bar

 File: The File menu contains all file-related commands with which

you can load and save Visual Basic applications. It also provides

printing access for printed program descriptions as well as the Exit

command.

 Edit: Programmers often use the commands on the Edit menu for

copying, cutting, and pasting text and graphical controls among

applications. The Edit commands also help you with the creation of

your programs by supplying common search and replace actions.

 View: The View menu command enables you to control the

viewing of your application's Code, Form, and Project windows,

various routines that can appear inside the Code window, as well as

the toolbar and toolbox.

 Insert: To insert additional objects, such as a second form, in your
Visual Basic application.

 Run: When you complete an application, you can see the results of
your work with the Run menu. The Run menu enables you to

39

23
 Chapter Two Visual Basic’s Visual Nature

execute programs, halt the execution, and resume the execution

after a halt.

 Tools: To test your program and work with additional tools that

comes with Visual Basic such as the Menu Editor. One of the most

powerful features of Visual Basic is its debugging capability. With

the Debug menu, you can execute a Visual Basic program one

statement at a time.

 Add-Ins: To add additional components to Visual Basic. The

default toolbox does not contain all the tools that you get with the

Visual Basic Working Model. For example, you can add additional

tools to your toolbar by selecting the Add-Ins option and locating

the extra tools.

 Help: When you select from the Help menu with the Working
Model edition of Visual Basic, you will get online help.

2-2-8: Tool Bar

The toolbar differs from the Toolbox window. The toolbar supplies

quick push-button commands for common tasks. Figure (2-10) below

shows the toolbar and labels each button on the toolbar. Many of the

toolbar buttons represent menu commands. Instead of issuing a menu

command or using a shortcut key, you can click a toolbar button with

the mouse to perform the same task. So the toolbar contains quick

access to many commands.

40

23 Chapter Two Visual Basic’s Visual Nature

Note that not all of the toolbar buttons are dark some are grayed out, just

as some of the pull-down menu bar commands are grayed out at times.

Visual Basic knows that certain commands have to be activated at

specific times within the program.

Add Project Menu Editor Save Copy Search Redo Resume

Add Form Open Cut Paste Undo Run Stop

Figure (2-10): Tool bar

41

23 Chapter Two Visual Basic’s Visual Nature

2-3: Applied Examples:

In the following few pages we will preview some examples that

can help you to understand what visual basic is and how can we deal

with this programming language. In these examples we show the

solution forms before and after execution in addition to clarify the

solution steps obviously.

Example-1:

What would appear on the form when we put the following control

objects? The units is Twip.

Name = lblWelcome

Alignment = 2-Center

Caption = Welcome To visual Basic

AutoSize = True

Font = Bold (14)

 Name =txtHello Name =cmdEnter

 Text = Caption = &Enter

 Left = 2880 Left = 600

 Top = 1320 Top = 1320

 Width =1215 Width =1215

 Height =495 Height = 495

42

22
 Chapter Two Visual Basic’s Visual Nature

Example-2:

What would appear on the form when we put the following control

objects?

Name = frmPicture
Caption = Picture
Form BackColor =
HighLight ScaleMode =
Pixel ScaleWidth =312
ScaleHight = 206
Width = 4800 Height
=3600

Name = imgBliss

Boarder Style = 1-Fixed
Single Stretch = True

Picture = C:\My Documents\...

My Pictures\Bliss.Bmp

Left = 48

Top = 24

Width = 217

Height = 121

Name =cmdHide Name =cmdShow

Caption = Hi&de Caption = &Show

Left = 184 Left = 48

Top = 160 Top = 160

Width =81 Width =81

Height = 33 Height = 33

Note: The character (&) "Ampersand" used in the Caption property

used to put the letter underlined to make a shortcut to it.

Note: When you call a picture in the Image Box you must True the

Stretch property before browsing the picture.

43

22
 Chapter Two Visual Basic’s Visual Nature

Example-3:

What would appear on the form when we put the following control

objects? The unit is Millimeter.

Name = drv1 Name = dir1 Name = fil1

Left = 4.233 Left = 4.233 Left = 4.233

Top = 4.233 Top = 12.7 Top = 29.633

Width= 23.45 Width= 42.59 Width = 42.59

Height =5.556 Height =13.49 Height =11.90

44

22 Chapter Two Visual Basic’s Visual Nature

Example-4:

Design a project containing a single form with address "My First

Program". A command button with name "Exit" is placed on this form.

When we clicked this button the application will be stopped. Use the

Twip unit.

Solution Steps:

1. Change the form property "Caption" to "My First Program".

2. Put a command button on the form and change its properties as shown:

Name =cmdExit

Caption = &Exit

Top = 1200

Width =1215

Left = 1680

Height = 495

3. Open the code window for the "Exit" command and write the quit

procedure (End) between the statements "Private Sub" and "End Sub".

Control Event

object

Exit Procedure

45

22
 Chapter Two Visual Basic’s Visual Nature

4. Run the project by pressing the blue triangle in the toolbar (or press

F5). Now press the "Exit" command to quit from the application.

Example-6:

Write a VB program that display the phrase ("Hello, World!") in a Text

Box when we click on the command button "Enter". The form also

contains the label (“Welcome To Visual Basic”).

Solution

After setting the control objects, the form will look like this:

Double click over the "Enter" command to view the code window which

we will write our program. As shown:

46

22
 Chapter Two Visual Basic’s Visual Nature

Run the project and click the command "Enter" (or press Alt+E) to

execute the program.

47

22
 Chapter Two Visual Basic’s Visual Nature

2-4 Problems

1. Identify the control objects used to design the below forms and list

the properties for each object.

2. Implement the following visual basic form:

48

22
 Chapter Two Visual Basic’s Visual Nature

3. Implement the following two forms in the same visual basic project.

49

23
 Chapter Two Visual Basic’s Visual Nature

4. What would appear on the form if we add the following control

objects if you know that the unit was Twip.

Name = lblFirst Name =txtName Name = cmdEnter

Alignment = 2-Center Text = Caption = &Enter

Caption = My First Program Left = 600 Left = 2880

AutoSize = True Top = 1500 Top = 1500

Font = Bold (20) Width =1215 Width =1215

Top =081 Height = 500 Height =500

Left = 600

5. What would appear on the form if we add the following control

objects if you know that the unit was Pixel.

Name = txtText Name =optHide Name =optShow

Alignment = 2-Center Caption = Hi&de Caption = &Show

Text = Visual Basic Vlaue = False Value = True

Left = 48 Left = 184 Left = 48

Top = 24 Top = 160 Top = 160

Width = 217 Width =81 Width =81

Height = 121 Height = 33 Height = 33

6. What would appear on the form when we put the following control

objects? The used unit is Twip.

 Property Control objects

 Name drv dir fil lbl txt

 Caption ----- ----- ----- Browser -----

 Left 120 1440 3240 1440 1440

 Top 840 840 840 120 2280

 Width 1215 1575 1215 1575 1575

 Height 315 990 990 222 375

50

15
 Chapter Three: Visual Basic Programming Language

CHAPTER THREE

Visual Basic Programming Language

Introduction

Visual Basic programming is one of the most enjoyable ways to

program. Much of creating a Visual Basic program requires placing

graphic objects on the screen and setting attributes for those objects

that determine how the objects are to look and behave. Visual Basic is

truly the only programming language today that beginning

programmers can learn easily. In addition, Visual Basic allows

advanced programmers to create powerful Windows applications. In

this chapter and following chapters, we’ll discuss some best statements

and functions used in visual basic programs with the use of practices

coding. All of these practices come from professional programmers,

but of you must implement them to know and learn how to build

complementary programs. In general, visual basic program contain of

the following steps:

1. Declaring variables and constants

2. Input variables and constants

3. Using the assignment statements

4. Using mathematical and logical operations

5. Printing the results

51

15
 Chapter Three: Visual Basic Programming Language

3-1: Variables Assignment- Statement

Variables hold values that can change. A variable's value can

change because a variable is nothing more than a storage area that can

hold one value at a time. When you store a different value in a

variable, the original value is replaced. So the variable is a temporary

named storage area inside your program's memory that holds data.

You are responsible for naming all variables in your code. Two

different variables cannot have the same name within the same

procedure because Visual Basic cannot distinguish between them.

Unlike control properties that are already named, variables don't have

names until you give them names. The assignment statement is the

easiest way to store values in variables. Here is the format of the

assignment statement:

Variable Name = Value

or : Control name . Property = Value

Where the terms:

Variable Name: The name of the suggested variable that we want to

store the value.

Control name: The name of the control object.

Property: Control objects property that we want to change.

Value: The new value that we want to store it in the variable (or in the

control object) and it can be any of the following:

52

15 Chapter Three: Visual Basic Programming Language

• A numerical value: Any number

• A literal value: Any string (usually parenthesized by double quit ("--"))

• A literal constants: Usually started by the prefix (vb) (to see these

literal constants see Appendix-A)

• A mathematical expression: Any mathematic operations.

• A variable: Another variable related with the original variable.

• A logical expression: Logical operations that its result True or False.

• Functions: These functions are prepared function usually found in

Visual Basic library.

3-2: Experimental Projects

In the following few pages we will see some of most popular

projects in windows applications.

3-2-1: Font Editor

This project contains a text box allow to receive any text then by

using three command boxes named "Size", "Style" and "Name" do the

following:

1. Change the font size to 20.

2. Change the font style to Bold.

3. Change the font name to "Arial".

53

15
 Chapter Three: Visual Basic Programming Language

Design Steps

 Set the control objects and write the codes for each commands, the

project will look like this:

Enter the text here

54

11
 Chapter Three: Visual Basic Programming Language

 Run the project and enter any text in the text box then click the three

commands and see the result as shown below:

Enter the text here

3-2-2: Dealing with literal constants

This project contains a picture box and four command buttons

("Black", "Red", "Yellow" and "Green"). The picture background will be

changed according to the selected color represented by command

buttons.

Design Steps

 Put the control objects in their places shown in figure below then

change their properties

55

15
 Chapter Three: Visual Basic Programming Language

 Write the code for each control object after completing the code

window will look like this:

56

15
 Chapter Three: Visual Basic Programming Language

Note that we use the literal constants that represent the different

colors. These constants (vblack, vbred, vbyellow, and vbgreen) are

used in the Backcolor property to change the picture color.(See

Appendix-A for more literal constants).

3-2-3: Using Combo Boxes

Design a project contains a combo box contains three items

(Item1, Item2, Item3) added from the code. The project also contains

a command "View item" and text box when we click this command

the selected item will appear on the text box.

Design Steps

 The form will be as shown after putting the objects that we will use it

in our project and writing the code to do our job.

57

15
 Chapter Three: Visual Basic Programming Language

 After running the program select any item from the combo box

and show the selected item in the text box as shown in figure

below

3-2-4: Working with Drive, Directory, and File List Boxes

The following project contains Drive List box, Directory List

Box, and File List Box. The selected file will appear on a text box

when we select the drive, directory then the file from the selected

objects.

58

15
 Chapter Three: Visual Basic Programming Language

Design Steps

The following three figures shows the designing steps before and

after executing the project and also shows the code window.

And the code will be :

59

56
 Chapter Three: Visual Basic Programming Language

Run the project and show the result

3-2-5: Dealing with Vertical and Horizontal Scroll Bars

This project contains three Vertical Scroll Bars represents three

colors (Red, Green, Blue) and a picture box. The three colors will be

merged and appeared on the picture box background according to the

selected colors. The scroll bars are scaled in the code from 0 to 255.

60

55
 Chapter Three: Visual Basic Programming Language

Hint: The function RGB (R, G, B) returns the resulted color from

mixing the three standard colors (Red, Green, Blue) respectively. The

value for each color alternated between (0 to 255). As an example

RGB(255, 0, 0) returns the red color, RGB(0, 255, 0) returns the green

color, and so on. In this question the values of R, G, and B are varied

using the scroll bars.

3-2-6: Using the Timer object

The following project displays the string "Visual" on a text box after 2000

smilliseconds from the execution then displays the string "Basic" on the

same text box after 4000 milliseconds. Change the timers interval and the

61

55
 Chapter Three: Visual Basic Programming Language

text properties (Alignment: center, font size:20, font bold: True) from the

code.

62

55
 Chapter Three: Visual Basic Programming Language

3-3: Const- Statement

Constants are special case of variables. Constants are variables

declared with storing a value on it and this value can not be changed

during the program execution time. Constants are declared and assigned

using the Const statement by the use of the following format:

Const Constant Name = Value

Where:

Constant Name: The name of the suggested constant that we want to

store the value.

Value: The value that we want to assign as a constant value and it can

be any of the following:

• A numerical value

• A literal value

• A literal constants

• A mathematical expression

• A logical value

As an example There are many constant values in many applications

like pie (π) in mathematics and (εo) in physics and so on. So the

definition of these constants in visual basic will be:

Const Pie = 3.14

Const Eps = 8.85E-12

If you add the following line to the program:

Pie = Pie + 1

An error message will appear tell you that the "assignment to

constant not permitted".

63

55
 Chapter Three: Visual Basic Programming Language

3-4: With- statement

This statement is important when the user want to change several

properties for the same control object. The general form for this

statement is:

With Control object Name

.property 1=value 1

.property 2=value 2

.property 3=value 3

.property n=value n

End With

Where:

Control Object Name: The name of the selected control object that

we want to change their properties.

Property 1 to Property n: The properties that we want to change for

the same object.

Value 1 to Value n: The values that explained earlier that will be

given to the properties 1 to n.

As an example if we have a Text Box named "txtName" and we want
to change the following properties for the same text

box: 1. text=Emad. 2. Font Bold. 3.Red font color
4.Font size = 16.

With txtName

.Text = "Electrical Engineering"

.FontBold = True

.ForeColor = vbRed

.FontSize = 16

End With

64

51 Chapter Three: Visual Basic Programming Language

3-5: Rem- statement

This is an abbreviation for the remark statement that is used to explain

a step (or more) by using a suitable comment without any execution.

The remarked step will be colored by a green color to know that this is

a comment line. A simplest way to remark a line is to use the single

quotation symbol (') before the comment. The Rem statement (or (')

symbol) is placed before the comment and the remarked line may be

any where of the program. The format that used to express this

statement is:

Rem Any comment or ' Any comment

As an example we will use the Rem statement in the first line of the

program and in the same time we will use the single quotation (') in
the end of the second line.

Rem This Is a Visual Basic Program

Text1.Text = 5 'Enter a value from 1 to 10

3-6: Dim- statement

Before you can use a variable, you must declare the variable by telling

Visual Basic the name and data type that the variable is to hold. The

Dim statement declares variables by assigning them a name and data

type. Before you can use a variable, you must first declare that variable

with a Dim statement. Here is the format of the Dim statement that you

use to declare variables:

Dim VariableName As Data type or Dim VariableName Symbol

65

55
 Chapter Three: Visual Basic Programming Language

Where :

VariableName is the name you assign to the variable.

DataType and Symbol are one of the data types and symbols listed in

table(3-1) below:

 Data Type Symbol Range Storage

Byte

N/A

 0 to 255 1 byte

Integer

%

 –32,768 to 32,767 2 bytes

Long

&

 –2,147,483,648 to 2,147,483,647 4 bytes

Single

!

 –3.402823E+38 to –1.401298E-45 (for negative

 values) 1.401298E-45 to 3.402823E+38 (for positive 4 bytes

values)

Double

 -1.797693134862E308 to -4.940656458412E-324 for

 negative values and from 4.94065645841247E-324 8 bytes

to 1.79769313486232E308 for positive values

Currency

@

 -922,337,203,685,477.580 to 22,337,203,685,477.580 8 bytes

String

$

 1 to about 65,400 characters 1 byte/chr

Date

 N/A January 1, 100 to December 31, 9999 8 bytes

Boolean

N/A

 True or False 2 bytes

Variant

N/A

 Any value as large as Double 16 bytes

Table(3-1): Data Types and Symbols for various type of data

Note

If you don't declare any variable, Visual Basic assumes that an undeclared

variable is of the Variant data type.

66

55 Chapter Three: Visual Basic Programming Language

3-7: Public – statement

The statement is similar to Dim statement used to declare variables but

the only difference that it is used to declare the general variables. So the

Dim statement used to declare the local variables that we use it only in

the same form procedure and the defined objects included on it. The

Public statement more general from the Dim statement because it is

used to define the variables used in the project and all the forms folded

in it. The general form for this statement is:

Public VariableName As Data type or Public VariableName Symbol

Where VariableName, Data type, and Symbol are defined earlier in

Dim statement

Note

The Dim statement can be written in the general procedure located at the

top of the code window procedure without using Private Sub and End
Sub. While the Public statement written in the Code Module window

which can be viewed from the following path:

Project Menu → Add Module.

3-8: Option Explicit – statement

The statement Option Explicit tells Visual Basic that the rest of the

code in this module is to declare all variables before they are used.

Thereafter, if you misspell a variable name in the middle of your

program, Visual Basic will catch the error. The Option Explicit takes its

place before the Dim or Public statement

67

55
 Chapter Three: Visual Basic Programming Language

Example

Design a project have a single form labeled "Display Example of Data

Types" contains five commands ("Integer", "Single", "Double", "String"

and "Date"). When you click any of them a specific data type will

appear on a five text boxes.

Solution

After setting the objects and writing the codes for each command, the

below figures will appear:

The programming code will be as follow:

68

55
 Chapter Three: Visual Basic Programming Language

Run the program and see the results

69

56
 Chapter Three: Visual Basic Programming Language

Note-1:

The Date type variables must be enclosed by two Hash symbols (#)

Note-2:

If we set float number in a variable we declare it as Integer type, this

number will be approximated to the nearest integer.

Note-3:

If we set Double type number in a variable we declare it as Single type,

this number will be approximated to the nearest 6 floating point.

3-9: Print- statement

The print statement used in the program to print any value or any

expression. Usually the print result will be appeared on the Form. This

statement my take one of the following formats:

1) To print a specific values (strings, numbers, symbols, mathematical or

logical expressions) use the following formula:

Print Value

2) To print a specific values separated by a single spaces use (;), as in the

following formula:

Print Value-1 ; Value-2 ; ….. ; Value-n

If we want to separate these values by 8 spaces use (,) instead of (;)

3) If we want to control the spaces number between the values we use

the functions Spc(n) and Tab(n). Where Spc(n) used when we want

70

55
 Chapter Three: Visual Basic Programming Language

to separate values by n spaces starts from the end of the first value.

Tab(n) is used to separate values by n spaces starts from the

beginning of the form. Use the following formula:

Print Value-1; (or ,) Spc(n) (or Tab(n)) ; (or ,) Value-2

Example

What would appear on the form after writing the below code if you

know that this form contains four commands named "P1", "P2", "P3",

and "P4".

Solution:

71

55
 Chapter Three: Visual Basic Programming Language

72

55
 Chapter Three: Visual Basic Programming Language

Note-1:

The event Load is used to store initial values in the used variables.

Note-2:

The function Chr(m) is used to obtain the character in the ASCII table

that its number is (m). So Chr(34) gives the character that its value is 34

in ASCII table which is the double quotation ("). For more ASCII codes

see Appendix-B.

3-10: Cls- statement

This statement is the inverse of the Print statement which is used to clear

the form from any printing values. Cls statement may be written alone in

the program or may written as one of the following two formats:

Form1.Cls

Me.Cls

3-11: End- statement

As you see in the previous chapter, this statement is used to ends the

execution and exit from the application. Like Cls statement we can use it

lonely without any control object.

3-12: Date- statement

This statement returns the computer date formats. You can use this

statement can not be used lonely (like Cls statement) but as a value for

other control objects.

73

55
 Chapter Three: Visual Basic Programming Language

3-13: Time- statement

This statement returns the computer time formats. As Date statements

You can not use this statement lonely but as a value for other control

objects.

3-14: Now- statement

This statement return the computer time and date formats and it can not

be used lonely but as a value for other control objects.

Example:

Write a VB program that displays the time on a Label Box when we

click over the command button "View Time" and the date on another

Label Box when we click over the command button "View Date". Add a

text Box to the form to view date & time when we click over the

command "View Date and Time".

Solution

we need the following control objects shown below:

74

51
 Chapter Three: Visual Basic Programming Language

Double click over the commands sequentially to view the below code

window that we will write our program:

Run the project then see the result. The result must be as shown below

75

55
 Chapter Three: Visual Basic Programming Language

3-15: Problems

1. Design a project contains a single form and four commands represent

four colors. When we click any of these commands the background color

for the form will be changed.

2. Design a project to enter a string from a text box then change the font

type, font size, and font style (Italic, Bold) for this string when you click

the three commands "Ftype", "Fsize", "Fstyle".

3. Design a project contains a label box having the below properties.

When we click the form the label on the label box will enlarge to double

size.

Name = lblLarger

Alignment = 2-Center

Caption = Larger

AutoSize = True

Font = Bold (10)

Top =360

Left = 1935

9. Write a VB program to change the below properties when we click

the three commands "modify text" , "modify picture" and “hide picture”

respectively:

1- Make the text box closer to the beginning of the form and display

"Visual Basic" on it.

2- Change the color of the picture to red and hide the picture.

3- Hide the picture to be invisible.

76

55
 Chapter Three: Visual Basic Programming Language

3. By using visual basic programming language implement a font editor

contains five text boxes to enter the font type, size, and style (Bold and

Italic) respectively. The fifth text box is used to enter the modified text.

The operation will be executed according to double clicked a command

box.

4. Design a visual basic project that changes the form color to three

basic colors (Red, Green, Blue) successively after 2, 4, and 6 seconds

respectively.

5. Design a VB project contains a label box, picture box and two

command buttons named "Maximize" and "Minimize" when we click

them the label box will enlarge to triple its size and the picture box will

reduced to half its sizes.

6. Design a project contains VSB, HSB and an Image Box. The two

scroll bars ranges from 0 to 100. The Image box enlarged horizontally or

vertically according to the two scroll bars.

7. Explain the advantage of the following visual basic statements:

 frmcolor. Backcolor = vbGreen

 picflower. Visible = False

 optselect. Value = True

 imgbliss . Stretch = True

8. By using visual basic programming language implement a digital

clock contains two commands (Date and Time) and two text boxes.

When we click these commands the daily date and time will appear on

these text boxes.

77

55
 Chapter Three: Visual Basic Programming Language

4. Design a VB project contains a three Vertical Scroll Bars represents

three colors (Red, Green, Blue) and a picture box. The three colors will

be merged and appeared on the picture box background according to

the selected colors. The scroll bars are scaled in the code from 0 to 255.

5. Design a project contains an image box, has the below properties,

and 8 commands. These commands are represents eight operations on

this image like; hiding, viewing, moving it in the four directions,

maximizing and minimizing it. Use the movement steps 100 Twip and

the maximizing and minimizing step 150 Twip.

Name = Image1

Stretch = True

Picture = C:\My Documents\My Pictures\Bliss.Bmp

Left = 0

Top = 0

Width = 1575

Height = 1335

13. Design a project have a single form labeled "Display Example of

Data Types" contains five commands ("Integer", "Single", "Double",

"String" and "Date"). When you click any of them a specific data type

will appear on a five text boxes. Use a statement to view an error

message if no variable was declared.

78

55
 Chapter Three: Visual Basic Programming Language

5. Design a project contain the below form then program it to be a font

editor project. After running the program enter any text then do

operations viewed in the form.

15. Design a project contain label box only then write a code that make

this label box act as a digital clock.

Hint: Use Timer object and set its interval to 1000.

16. What is data types are defined by suffix shown below:

Index%

Counter&

TaxRate!

Ratio#

CustomerName$

79

56
 Chapter Three: Visual Basic Programming Language

17. What is the purpose of the Const statement? How does it differ

from a Dim statement? How is a Const statement written?

18. Suppose a Print statement includes five output items, separated by

commas. How can the statement be rewritten so that the output items

appear on the same line, with minimum spacing between them?

19. Suppose a Print statement includes five output items. How can the

statement be rewritten so that the first three data items appear on one

line and the remaining two data items appear on a second line?

20. In Visual Basic, how does a named constant differ from a

variable?

21. Write a single (one-line) declaration for each of the following

situations:

6. Declare x1 and x2 as single-precision real variables.

7. Declare CustomerName and Address as string variables.

8. Declare Counter as an integer variable, and Sum and Variance

as double-precision real variables.

 Declare City as a named string constant whose value is “New

York”.

22. Write a VB program that displays the time on a Label Box when

we click over the command button "View Time" and the date on

another Label Box when we click over the command button "View

Date". Add a text Box to the form to view date & time when we click

over the command "View Date and Time".

80

18
 Chapter Four: Operators & Functions

CHAPTER FOUR

Operators and Functions

Introduction

Visual Basic supports numerous operators and functions. In this

chapter we will list the most common operators and functions. We use

these operators and functions in expressions when calculating and

working with various types of data. Operators and functions

manipulate data by combining or computing results.

4-1: Visual Basic Operators

Data values and controls are not the only kinds of assignments that

you can make. With the Visual Basic operators, you can calculate and

assign expression results to variables when you code assignment

statements that contain expressions. So an operator is a word or symbol

that does math and data manipulation, Operators are classified into four

mainly types these are:

1. Mathematical Operators.

2. String Operators.

3. Conditional Operators.

4. Logical Operators.

81

18 Chapter Four: Operators & Functions

4-1-1: Mathematical Operators

These types of Operators manipulate data by combining or

computing results mathematically. Most mathematical operators are

symbols, but some, such as Mod, look more like Visual Basic

commands. Table (4-1) below illustrates these operators according to

their predefined order

Operator

Meaning

Example

Result

) (Parentheses (2+3) * 7 35

 ^ Exponentiation 2 ^ 3 8

 * Multiplication 2 * 3 6

 / Division 6 / 2 3

 \ Integer Division 11\3 3

 Mod Modulus 11 Mod 3 2

 + Addition 2 + 3 5

 - Subtraction 6 – 3 3

Tabel (4-1): VB Operators

Example-1:

Design a project contains a command button "Find" and two text boxes.

When we enter a number (represents the radius of a circle) from the first

text box, the area of this circle will appeared on the second text box and

when we click the command "Find".

82

18 Chapter Four: Operators & Functions

Solution:

Private Sub cmdFind_Click)(

Dim R!, A!

Const pie = 3.14

R = Val

(txtRadius.Text) A = R

^ 2 * pie txtArea.Text =

A End Sub

After running the project enter any value represents the radius for the

circle then click the command "Find", the area of this circle will

appeared on the other text box.

83

18
 Chapter Four: Operators & Functions

Note :

The text box always deals with texts (i.e data of type literal value) but if

we want this text to deal with numbers we use the function Val() which

converts the literal values to number of type variant.

4-1-2: String Operators

These operators are used in string operations and usually classified into

two operations as shown in table (4-2) below:

Operations

Operators

Example

Result

Concatenation

+

"com"+"puter"

computer

&

"com"&"puter"

computer

 Comparing Like "abc"Like"adc" False

Table (4-2): VB String Operators

Example-2:

What is the result of the following program?

Private Sub Form_Click)(

Dim A, B, C, D As String

Dim E, F, G As Boolean

A = "I will install"

B = "Visual Basic version 6.0"

C=A+B

D = A & B & "in my computer"

E = B Like "Visual Basic version 7.0"

F = B Like "Visual ?asic version 6.0"

84

18
 Chapter Four: Operators & Functions

G = B Like "Visual Basic version #.0"

Print C; Print D

Print E; F; G

End Sub

Answer:

I will install Visual Basic version 6.0"

I will install Visual Basic version 6.0 in my computer

False True True

Note-1 : The question mark (?) is used to indicates to any character

may take this place.

Note-2 : The hash symbol (#) is used to indicates to any number may

take this place.

4-1-3: Conditional Operators

Conditional operators compare data. By comparing data and

analyzing results, your Visual Basic program can decide an appropriate

course of action based on data alone. By writing programs with

conditional operators and statements, you let Visual Basic decide, at

runtime, which statements to execute in a program. Through the

conditional operators, you can learn if a value is less than, equal to, or

greater than another value. Table (4-3) supports six conditional

operators.

85

18
 Chapter Four: Operators & Functions

Operator

Description

Example

Result

 = Equal to 7 = 2 False

 < Greater than 6 > 3 True

 > Less than 5 < 11 True

 <= Greater than or equal to 23 >= 23 True

 >= Less than or equal to 4 <= 21 True

 >< Not equal to 3 <> 3 False

Table(4-3): VB Conditional Operators

Example-3:

What is the result of the following program?

Private Sub Form_Click()

Dim A, B As Integer

Dim A1, B1, C1, D1, E1, F1 As Boolean

A=54

B=80

A1=(A=B)

B1=(A>B)

C1=(A<B)

D1=(A<=B)

E1=(A>=B)

F1=(A<>B)

Print A1; Spc(2); B1; Spc(2); C1

Print D1; Spc(2); E1; Spc(2); F1

End Sub

86

18 Chapter Four: Operators & Functions

Answer:

False False True

True False True

4-1-4: Logical Operators

The logical operators let you combine two or more sets of conditional

comparisons. Like the Mod operator, the logical operators use

keywords instead of symbols. Visual Basic supports three logical

operators listed in the table (4-4) below:

Operator

Description

Example

Result

 Not Negates truth Not (3 = 3) False

 And Both sides must be true (2<3) And (4 < 5) True

 Or One side or other must be true (2 < 3) Or (6 < 7) True

 One side or other must be true

 Xor

 (2 < 3) Xor (7 > 4)
 False

 but not both

Table(4-4): VB Logical Operators

Example-4:

What is the result of the following program?

Private Sub Form_Click()

Dim A, B, C, D As Boolean

Dim Res1, Res2, Res3, Res4 As Boolean

A = True

B = True

C = False

D = False

Res1 = Not D

Res2 = A Or B

87

11 Chapter Four: Operators & Functions

Res3 = A And D

Res4 = B Xor C

Print "Res1="; Res1

Print "Res2="; Res2

Print "Res3="; Res3

Print "Res4="; Res4

End Sub

Answer

Res1= True

Res2= True

Res3= False

Res4= True

Note: Technically, the six conditional operators offer enough power to

test for any condition, but you can greatly enhance their flexibility

by combining the conditional operators with logical operators.

Note: The complete priority of VB operators is shown in table (4-5)

below:

Order

Operators

 1 Mathematical Operators

 2 Conditional operators

 3 String Operators

4

Logical operator

Table(4-5): VB Operators priority

88

18
 Chapter Four: Operators & Functions

Example-5

What is the result of the following program?

Private Sub Form_Click()

Dim A, B, C, D As Integer

Dim V1, V2, V3, V4, V5, V6 As Boolean

A=50:B=70:C=80:D=90

V1 = A > B And B < C

V2 = A <> B And B <> C

V3 = A > C Or D > A

V4 = V1 And V2 Or V3 Or A < C

V5 = A + B > A / B And D - C / 2 > B \ A

V6 = Not A + D ^ 2 = B / C ^ 2 Xor D ^ 2 = C \ A

Print V1; Spc(2); V2; Spc(2); V3

Print V4; Spc(2); V5; Spc(2); V6

End Sub

Answer

If we applied the priority shown in previous table table(4-5), the

complete solution for (V1, V2, V3, V4, V5, and V6) will be:

V1 = (A > B) And (B < C)

V2 = (A <> B) And (B <> C)

V3 = (A > C) Or (D > A)

V4 = V1 And (V2 Or V3) Or (A < C)

V5 = ((A + B) > A / B) And (((D - C) / 2) > (B \ A))

V6 = Not ((A + D) ^ 2 = (B / C) ^ 2) Xor (D ^ 2 = (C \ A))

So the result will be:

False True True

True True True

89

89
 Chapter Four: Operators & Functions

4-2: Visual Basic Functions

Functions accept one or more arguments and do work with those

arguments. The function then returns a single value. There are many

built-in functions in Visual Basic that your programs can call.

Programs that call functions must do something with the return values

from those functions. A function might require one argument or more.

If you send an argument list to a function, that function operates on

those arguments and returns a single value based on the argument list.

In general, functions can be classified into many types:

1. Input box function.

2. Message box function.

3. Mathematical functions.

4. Conversion functions.

5. String functions.

6. Date and Time functions.

7. User functions.

90

88
 Chapter Four: Operators & Functions

4-2-1: Input Box Function

Input boxes are great to use when the user must respond to certain

kinds of questions. Text boxes controls are fine for getting fixed input

from the user, such as data values with which the program will

compute. Input boxes are great for asking the user questions that arise

only under certain conditions. Input boxes always give the user a place

to respond with an answer. There are two InputBox() functions. Here

are the formats of the InputBox() functions:

var = InputBox ("Message","Title")

or:

var = val (InputBox ("Message", "Title"))

Where:

Var: Variable name returned value.

Message: Is a string (either variable or a string constant enclosed in

quotation marks) and forms the text of the message displayed in the

input box.

Title: Is an optional string that represents the text in the input box's title

bar. If you omit the title, Visual Basic uses the project's name for the

input box's title bar text.

The difference between the InputBox() functions lies in the return

value. The first InputBox() function returns a string data type and the

91

88
 Chapter Four: Operators & Functions

second InputBox$() function returns a variant data type. After

applying the InputBox() forms above the following figure will appear:

Example-6

Write a VB program to enter four numbers then calculate the square

and cube value for these numbers. Print these numbers with their

square and cube values as a table.

Solution:

Private Sub Form_Click)(

Dim A!, B!, C!, D!

Dim X1!, X2!, X3!, X4!

Dim Y1!, Y2!, Y3!, Y4!

A = Val(InputBox("Enter the first number", "Number 1"))

B = Val(InputBox("Enter the second number", "Number 2"))

C = Val(InputBox("Enter the third number", "Number 3"))

D = Val(InputBox("Enter the fourth number", "Number 4"))

X1=A^2:X2=B^2:X3=C^2:X4=D^2

Y1=A^3:Y2=B^3:Y3=C^3:Y4=D^3

92

88 Chapter Four: Operators & Functions

Print "Number", "Square", "Cube"

Print A, X1, Y1

Print B, X2, Y2

Print C, X3, Y3

Print D, X4, Y4

End Sub

Finally: Run the program and click the form then enter the four numbers

in the viewed input boxes respectively. The following results will appear

(if the entered values was 1, 2, 3, and 4).

4-2-2: Message Box Function

There will be many times in programs when you'll need to ask the

user questions or display error messages and advice to the user. Often,

the controls on the form won't work well for such dialogs boxes aren't

controls. Unlike controls that stay on the form throughout a program's

entire execution cycle, a message box pops up on top of the form and

93

88
 Chapter Four: Operators & Functions

disappears when the user responds to the message box, usually by

clicking the message box's OK command button.

There are two ways to produce message boxes. You can use the

MsgBox statement or the MsgBox() function. The MsgBox statement

displays messages for the user. In addition, the MsgBox() function

displays messages but also provides a way for your program to display

and check for multiple command button clicks on the message box

window. Therefore, the statement following the statement executes

when the user clicks OK. Here is the format of the MsgBox statement:

MsgBox “Message” , Symbol , “Title”

Where:

Message: is a string (either variable or a string constant enclosed in

quotation marks) and forms the text of the message displayed in the

message box.

Title: is an optional string that represents the text in the message box's

title bar. If you omit the title, Visual Basic uses the project's name for

the message box's title bar text

Symbol: is an optional numeric value, or VB constants, that describes

the options you want in the message box. These options that you select

determine whether the message box displays an icon, selection buttons

as well as the button focusing. Tables (4-6), (4-7), and (4-8) contain the

code values and VB constants that we will use it to form these three

options respectively.

94

88 Chapter Four: Operators & Functions

Icons

Value

VB Constant

Description

 Value

 16 VbCritical Displays the halt sign icon

 32 VbQuestion Displays the question mark icon

 48 VbExclamation Displays the exclamation icon

 64 VbInformation Displays the information icon

 Table (4-6): Icon symbols and VB constants for the MsgBox function

Value

VB Constant

Selection button

 0 VbOKOnly OK

 1 VbOKCancel OK and Cancel

 2 VbAbortRetryIgnor Abort, Retry and Ignore

 3 VbYesNoCancel Yes, No and Cancel

 4 VbYesNo Yes and No

 5 VbRetryCancel Retry and Cancel

Table (4-7): Selection button VB constants for the MsgBox function

95

88
 Chapter Four: Operators & Functions

Value

VB Constant

Focus

 0 VbDefaultButton1 Button 1 default

 256 VbDefaultButton2 Button 2 default

 512 VbDefaultButton3 Button 3 default

 768 VbDefaultButton4 Button 4 default

Table (4-8): Button focusing VB constants for the MsgBox function

Note-1

We can use either the values or the VB constants to build any message

box.

Note-2

In InputBox() and MsgBox() if we want to write the "message" in two

or more lines follow the following form:

"String1" + Chr (13) + "String2" + …..

Where the function Chr() is explained in the following few pages.

Example-7

What are the optional values that we set in the MsgBox to view the

below message boxes?

96

88
 Chapter Four: Operators & Functions

Answer:

Symbol = vbQuestion + vbYesNo + vbDefaultButton2

MsgBox "Do you want to Exit", Symbol, "Sample_1"

Symbol = vbCritical + vbAbortRetryIgnore + vbDefaultButton3

MsgBox "There is an Error", Symbol, "Sample_2"

97

81 Chapter Four: Operators & Functions

Example-8

What would appear when we execute the following codes?

Symbol = vbExclamation + vbYesNoCancel

MsgBox "save changes"+Chr(13)+"to this program", Symbol, "Sample_3"

Symbol = vbInformation

MsgBox "Printing complete", Symbol, "Sample_4"

Answer:

98

88
 Chapter Four: Operators & Functions

MsgBox() function: The format of the MsgBox() function is almost

identical to that of the MsgBox statement. Always assign a MsgBox()

function to a variable represent the return value. Here is the format of

the MsgBox() function:

Return value = MsgBox (“Message”, Symbol, “Title”)

Table (4-9) lists the possible return values for the MsgBox() function.

In other words, the return variable may contain one of these values

(Return value or Return VB Constant). A subsequent If statement (that

we explain it in details in the next chapter) can then test to see which

command button the user pressed.

Pressed Return Return VB

button value constant

OK 1 VbOK

Cancel 2 VbCancel

Abort 3 VbAbort

Retry 4 VbRetry

Ignore 5 VbIgnore

Yes 6 VbYes

No 7 VbNo

Table (4-9): The return Value for the pressed button

99

899
 Chapter Four: Operators & Functions

Example-9

Design a project contains a single command named "Exit" when we

click it a message box will appeared. This message box contains two

selection buttons Yes and No asked you to assert your existence and

when you click yes the application will be stopped.

Solution:

Private Sub cmdExit_Click)(

Sym = vbQuestion + vbYesNo

Ret = MsgBox("Do you want to exit", Sym, "QUIT”)

If Ret = vbYes Then End

End Sub

100

898 Chapter Four: Operators & Functions

4-2-3: Mathematical Functions

The mathematical functions will help you write programs when you

need to include mathematical calculations in the code. Most of life

applications used the mathematical functions to solve many complex

problems contain various equations. In following few lines we will lists

some of more used mathematical functions in Visual Basic program

that may see it as a same spell in other programming languages.

1. Abs (n)

Returns the absolute value of the value (n)

Ex: Find Y= |X| if you know that X= -3.54

X = -3.54

Y = Abs (X)

Print Y

Ans: Y = 3.54

2. Sqr (n)

Returns the square root of the value (n)

Ex: Find Y= X if you know that X= 16

X= 16

Y= Sqr (X)

Print Y

Ans: Y= 4

101

898 Chapter Four: Operators & Functions

3. Exp (n)

Returns the base of the natural logarithm of the value (n) (Exponential

value of (n)).

Ex: Find Y= e
X
 if you know that X= 1.4

X= 1.4

Y= Exp (X)

Print Y

Ans: Y= 8698888888818888

4. Log (n)

Returns the natural logarithm of the value (n)

.Ex: Find Y= Ln (X) if you know that X= 2.4

X= 2.3

Y= Log (X)

Print Y

Ans: Y= 0. 8754687373539

5. Sgn (n)

Return (1) if the sign of value (n) was positive and (-1) if it was negative

Ex: What is the result of the following VB program

X= -3.5

Y= Sgn (-3.5)

Print Y

Ans: Y= -1

102

898
 Chapter Four: Operators & Functions

6. Rnd

Returns a random number ranges from 0 to 1

Ex: Generate and print a random number in the interval [0, 20]

Ans:

Y= 20 * Rnd

Print Y

7. Randomize

Initialize the random number generator

Ex: Generate and print random number in the interval [0, 1] without

repetition.

Ans:

Randomize

Y = Rnd

Print Y

8. Round (n)

Return an integer value represents the approximation of the value (n).

Ex: Approximate X to nearest integer if you know that X=12.5

Ans:

X = 12.5

Y = Round(X)

Print Y

103

898
 Chapter Four: Operators & Functions

9. Sin (n)

Returns the computed sine of the value (n) expressed in radians

Ex: Find Y= sin (X) if you know that X= 2.3 rad

X= 2.3

Y= Sin (X)

Print Y

Ans: Y= 0.74570521217672

10. Cos (n)

Returns the computed cosine of the value (n) expressed in radians

Ex: Find Y= cos (X) if you know that X= 6.8 rad

X= 6.8

Y= Cos (X)

Print Y

Ans: Y= 0. 88888888988818

11. Tan (n)

Returns the computed tangent of the value (n) expressed in radians

Ex: Find Y= tan (X) if you know that X= 2.5 rad

X=2.5

Y = Tan(X)

Print Y

Ans: Y= -0.74702229723866

104

898
 Chapter Four: Operators & Functions

12. Atn (n)

Returns the arctangent of the value (n) expressed in radians and it's

also called arc length for the angle (n).

Ex: Find the arc length for the angle (X) in radian if you know that

X= 6.7 rad

X=6.7

Y = Atn(X)

Print Y

Ans: Y= 0.958113088595432

Note: If you compute trigonometric values on arguments expressed

as degrees instead of radians, multiply the argument by π and divide by

180.

Ex: Find Y= sin (X) if you know that X= 3.7
o

Const pie =3.14

X = 3.7 * (pie / 180)

Y = Sin (X)

Print Y

Ans: Y= 6.44996385772737E-02

105

898
 Chapter Four: Operators & Functions

4-2-4: Conversion Functions

Visual Basic supplies many functions that convert the argument

from a specific data type to another. When writing applications, you

might need to round numbers down or up to their nearest integers or we

need to convert a number temporary to a specific data type so we will

use these functions. Table below contains the most well-known

functions.

1. Asc (S)

Converts the string value (S) to an equivalent ASCII number>

Ex: Find the Ascii code for the dollar sign ($).

S="$"

Y = Asc(S)

Print Y

Ans: Y= 36

2. Chr (n)

Converts the argument number to an equivalent ASCII .

Ex: What is the equivalent ASCII symbol for the number (34)?

n = 38

Y = Chr (n)

Print Y

Ans: Y= &

106

898
 Chapter Four: Operators & Functions

3. CInt (n)

Rounds fractional values of 0.6 and more to the next highest integer

(like Round())

Ex: What is the result after execution the following steps:

X= 4.8

Y= CInt (X)

Print Y

Ans: Y= 5

4. CLng (n)

Converts the argument (n) to an equivalent long integer data type

Ex: What is the result after execution the following steps:

X = 22747475.656

Y = CLng(X)

Print Y

Ans: Y= 22747476

5. CSng (n)

Converts the argument (n) to an equivalent single-precision data type

Ex: What is the result after execution the following steps:

X=22/7

Y = CSng(X)

Print Y

Ans: Y= 3.142857

107

891
 Chapter Four: Operators & Functions

6. CDbl (n)

Converts the argument (n) to an equivalent double-precision data type

Ex: What is the result after execution the following steps:

X=22/7

Y = CDbl(X)

Print Y

Ans: Y= 3.14285714285714

7. Hex (n)

Converts the decimal number equivalent hexadecimal

Ex: What is the result after execution the following steps:

X=15

Y = Hex (X)

Print Y

Ans: Y= F

8. Oct (n)

Converts the decimal number equivalent octal

Ex: What is the result after execution the following steps:

X = 9

Y = Oct (X)

Print Y

Ans: Y= 11

108

898
 Chapter Four: Operators & Functions

9. Int (n)

Rounds the number (n) down to the integer less than or equal to its

arguments

Ex: What is the result after execution the following steps:

X = -8.1

Y = Int (X)

Print Y

Ans: Y= -9

10. Fix (n)

Truncates the fractional portion

Ex: What is the result after execution the following steps:

X=9.8

Y = Int (X)

Print Y

Ans: Y= 9

11. CStr (n)

Converts the argument (n) to an equivalent string data type

Ex: What is the result after execution the following steps:

X = Cstr(3)

Y = Cstr(7)

Z=X+Y

Print Z

109

889
 Chapter Four: Operators & Functions

Ans: Z= 37

12. Val (s)

Converts the string argument to an equivalent numbering data type.

4-2-5: String Functions

There are several Visual Basic string functions that manipulate

string data better than most other programming languages allow. The

string functions allow you to strip away characters from string data and

change strings in various ways. Table below lists these functions.

1. LCase (s)

Returns the string argument as a variant data type that's all lowercase

letters

Ex: What is the result after execution the following steps:

X = "AL-MUSTANSIRIYA UNIVERSITY”

Y= LCase (X)

Print Y

Ans: Y= al-mustansiriya university

2. UCase (s)

Returns the string argument as a variant data type that's all uppercase

letters

Ex: What is the result after execution the following steps:

110

888 Chapter Four: Operators & Functions

X = "college of engineering"

Y = UCase(X)

Print Y

Ans: Y= COLLEGE OF ENGINEERING

3. Left (s, n)

Returns partial string argument contains (n) characters from the left of

the main string

Ex: What is the result after execution the following steps:

X = "Electrical Engineering Department"

Y = Left(X, 22)

Print Y

Ans: Y= Electrical Engineering

4. Right (s, n)

Returns partial string argument contains (n) characters from the right of

the main string

Ex: What is the result after execution the following steps:

X = "First Class"

Y = Right (X, 5)

Print Y

Ans: Y= Class

111

888
 Chapter Four: Operators & Functions

5. Mid (s, n1, n2)

Returns partial string argument contains (n2) characters starting from

character number (n1) of string argument (s)

Ex: What is the result after execution the following steps:

X = "Electric"

Y = Mid(X, 3, 4)

Print Y

Ans: Y= ectr

6. LTrim (s)

Returns a string argument contains trimmed left spaces from the main

string

Ex: What is the result after execution the following steps:

X = " Engineer "

Y = LTrim(X)

Print Y

Ans: Y= Engineer

7. RTrim (s)

Returns a string argument contains trimmed right spaces from the main

string.

Ex: What is the result after execution the following steps:

X = " Engineer "

112

888 Chapter Four: Operators & Functions

Y = LTrim(X)

Print Y

Ans: Y= Engineer

8. Trim (s)

Returns a string argument contains trimmed spaces from the main string

Ex: What is the result after execution the following steps:

X = " Engineer "

Y = LTrim(X)

Print Y

Ans: Y= Engineer

9. Len (s)

Returns a number represents the string length.

Ex: What is the result after execution the following steps:

X = "Ministry of Higher Education"

Y = Len (X)

Print Y

Ans: Y= 28

10. Replace (s,s1,s2)

Returns a string contains the replaced string (s1) from the main string (s)

by string (s2).

113

888
 Chapter Four: Operators & Functions

Ex: What is the result after execution the following steps:

X = "Physics Lectures"

X1 = "Physics"

X2 = "Computer"

Y = Replace(X, X1, X2)

Print Y

Ans: Y= Computer Lectures

11. StrReverse (s)

Returns a string argument reversed from the main string

Ex: What is the result after execution the following steps:

X="ABCDE"

Y = StrReverse(X)

Print Y

Ans: Y= E D C B A

4-2-6: Date and Time Functions

The date and time functions return values set inside your computer

so that you can use and display those values in your program. Table

below lists these functions.

1. Day(d)

Returns the day number in the date argument (d).

Ex: Write a program to find the day number for the date (8/7/2007)

114

888
 Chapter Four: Operators & Functions

X = # 8/7/2007#

Y = Day (X)

Print Y

Ans: Y= 8

2. Month(d)

Returns the month number in the date argument (d)

Ex: Write a program to find the month number for the date

(26/12/2011)

X = # 24/1/2013#

Y = Month (X)

Print Y

Ans: Y= 12

3. Year(d)

Returns the year number in the date argument (d)

Ex: Write a program to find the year for the date (1/7/2010)

X = # 24/1/2013#

Y = Year (X)

Print Y

Ans: Y= 2013

4. MonthName (n)

Returns the month name that its order is (n).

Ex: Write a program to find the month name for the forth month.

115

888
 Chapter Four: Operators & Functions

X = 4

Y = MonthName(X)

Print Y

Ans: Y= April

5. WeekDayName (n)

Returns the day name that its order is (n)

Ex: Write a program to find the day name for the fifth week day.

X = 5

Y = WeekdayName(X)

Print Y

Ans: Y= Wednesday

6. Second (t)

Returns the second number in the time argument (t)

Ex: Write a program to find the seconds for the time (01:25:30 AM)

X = #1:25:30 AM#

Y = Second(X)

Print Y

Ans: Y= 30

7. Minute (t)

Returns the minute number in the time argument (t)

Ex: Write a program to find the minutes for the time (10:22:10 PM)

X = #10:22:10 PM#

116

888 Chapter Four: Operators & Functions

Y = Minute(X)

Print Y

Ans: Y= 22

8. Hour (t)

Returns the hour number in the time argument (t)

Ex: Write a program to find the Hours for the time (03:12:40 AM)

X = #03:12:40 AM#

Y = Minute(X)

Print Y

Ans: Y= 3

Note : As we enclosed the string values by double quotation marks

"-", we enclosed the date and time values by double hash marks # - #.

4-2-7: User Functions

These types of functions are not found in the visual basic library

because these types are built according to special calculations. The

programmer will build these functions according to its requisites with

the use of the following form:

Private Function FName (V-1 As Type-1,…, V-n As Type-n) As function Type

Function body

End Function

117

881
 Chapter Four: Operators & Functions

Then we can call the function using the following form:

Vname = FName (parameters)

Where:

FName: The name of the function you want to make it (may take any

symbol or any string)

V-1 to V-n: The function variables (parameters) used in the program.

Type-1 to Type-n: The data types for the function variables (inputs).

Function Type: The data types for the function output.

Function body: Any relation between function name and their

variables.

Vname: The resulted variable after calling the function and appling

their parameters.

Example:

As we know the trigonometric functions Sin, Cos,…etc, returns a

suitable argument according to the applied angle in radian unit.

Implement the function "Sec" then enter any value through the main

program then find Sec for this number.

Solution

Function Sec(n As Double) As Double

Sec = 1 / Cos(n)

End Function

118

888 Chapter Four: Operators & Functions

Private Sub Form_Click()

Dim X#, Y#

X = Val(InputBox("Ener any value"))

Y = Sec(X)

Print Y

End Sub

Example:

Implement the a function named "Sum" to evaluate a summation of

three student degrees (X, Y, Z). Enter the degrees and print the result

through the main program.

Solution

Private Function Sum (X, Y, Z As Single) As Single

Sum = X + Y + Z

End Function

--

Private Sub Form_Click ()

Dim deg1!, deg2!, deg3!, S!

deg1 = Val (InputBox ("enter the first degree"))

deg2 = Val (InputBox ("enter the second degree"))

deg3 = Val (InputBox ("enter the third degree"))

S = Sum (deg1, deg2, deg3)

Print "The sum is:"; S

End Sub

119

889 Chapter Four: Operators & Functions

 Note: For more functions you can see Appendix-C sorted in

 alphabetic manner

4.3 Problems

1- Design a project contains a command button "Find" and two text

boxes. When we enter a number (represents the radius of a circle) from

the first text box, the area of this circle will appeared on the second text

box and when we click the command "Find".

2- What is the result of the following program?

Private Sub Form_Click)(

Dim A, B, C, D As String

Dim E, F, G As Boolean

A = "I will install"

B = "Visual Basic version 6.0"

C=A+B

D = A & B & "in my computer"

E = B Like "Visual Basic version 7.0"

F = B Like "Visual ?asic version 6.0"

G = B Like "Visual Basic version #.0"

Print C; Print D

Print E; F; G

End Sub

3- What is the result of the following program?

Private Sub Form_Click()

Dim A, B, C, D As Boolean

Dim Res1, Res2, Res3, Res4 As Boolean

120

888
 Chapter Four: Operators & Functions

A = True

B = True

C = False

D = False

Res1 = Not D

Res2 = A Or B

Res3 = A And D

Res4 = B Xor C

Print "Res1="; Res1

Print "Res2="; Res2

Print "Res3="; Res3

Print "Res4="; Res4

End Sub

4- What is the result of the following program?

Private Sub Form_Click()

Dim A, B, C, D As Integer

Dim V1, V2, V3, V4, V5, V6 As Boolean
A=50:B=70:C=80:D=90 V1 = (A > B)

And (B < C)

V2 = (A <> B) And (B <> C)

V3 = (A > C) Or (D > A)

V4 = V1 And (V2 Or V3) Or (A < C)

V5 = ((A + B) > A / B) And (((D - C) / 2) > (B \ A))

V6 = Not (((A + D) ^ 2 = (B / C) ^ 2) Xor (D ^ 2 = (C \ A)))

Print V1; Spc(2); V2; Spc(2); V3

Print V4; Spc(2); V5; Spc(2); V6

End Sub

5. Use two Text Boxes to enter two values and display their product on a

third Text.

121

888 Chapter Four: Operators & Functions

6. Use three Text Boxes to enter three values and display their sum on a

fourth Text.

7. Write a VB program to find and view the area of a triangle on a text

box when we enter the base and height using two text boxes.

8. Write a VB program to enter three strings through three text boxes

then concatenate and display them on a label box.

9. What is the result after executing the following program?

Private Sub Form_Click()

Dim A, B, C, D As Integer

Dim E, F, G, H As Boolean

A=100:B=100:C=140:D=133

E = (A = B) And (Not ((B = C)))

F = ((A < D) Xor (C <> D)) Or (C >= B)

G = ((A / 100) = ((C - 40) / 100)) And (F Or E)

H = G And ((E Or F) Or (A ^ 2 <= 100 * B))

Print E; Spc(2); F; Spc(2); G; Spc(2); H

End Sub

6. Represent the following keys in logical relations:

Var1 Var1 Var3

 Var3 Var4

Var2 Var2 Var4

 Var1

Var1 Var2 Var4

 Var5 Var2

Var3 Var4
Var3

 122

888
 Chapter Four: Operators & Functions

• Write a VB program to enter two numbers through two text boxes

then display their division, sum, subtract using three label boxes.

• Use two input boxes named "First" and "Second" to enter two

numbers when we click the command "Loading Numbers". Another

two commands "Addition" and "Subtraction" are used to print the

addition and subtraction results for these two numbers when we click

them respectively.

• If you know that the radius of the circle inscribed in triangle with

sides a, b, c is:

r
(s a)(s b)(s c)

 where s
1

(a b c)

s 2

Input the triangle sides by using three input boxes then find and display

the radius (r).

4. Write a VB program asks the user to enter his name and age then

display them on two message boxes.

5. Write a VB program to view the below message box when you

click the command "Disk".

123

888 Chapter Four: Operators & Functions

 Write a VB program to view the below message box when you

click the form

.

Then view the following message boxes when we click the above

selected button respectively.

 Write a VB program to make a password. Enter any word by using

an input box then compare it with a previously stored word (let it be

"VBasic"). If the two words are matched the below left message box

will appear, else the below right box appeared.

124

888
 Chapter Four: Operators & Functions

 Write a VB program to enter any two numbers (x and y) via an input

box then find and print the value of Z from the following equations:

 Z Sin(x
2
) Tan

3
 (3

y
)

 Z Ln(
x
y)

4
 x

2
 y

2

 Write a VB program to enter any character in a text box then display

the equivalent ASCII value in another text box after pressing the

command "Convert".

 Write a VB program to display the present time and date on two

text boxes then split these information to six values and display them

on six text boxes after pressing the commands "Time" and "Date".

 As you know that the function Log(x) returns the natural logarithm

for argument (x) (i.e. Ln(x)). Write a VB program to implement the

function LogEx(x,b) to find the logarithm for the argument (x) with

any base (b) then find and print Log4(9).

Hint: Use the relation Logb(x)= Ln(x)/Ln(b)

125

888
 Chapter Four: Operators & Functions

22. Write a VB program to implement the function NthRoot (x, N) to

return the Nth root for the argument (x) (i.e.
N

 X
). Test the function

by finding
5

16
.

 As you know that the statement Rnd generates a random number

in the interval [0,1], write a VB program to implement the function

RndMinMax(Min, Max) to generate a random number limited by the

interval [Min, Max]. Test the function by generating a number in the

interval [2, 10].

Hint: Use the relation Int ((Max-Min+1)*Rnd+Min)

 Write a VB program to enter any number then print the triple of

this number. Use the function Triple(n) to find the triple of any

number.

 Write a VB program to evaluate the following by the use of user

functions:

x

x
3

3 sinh
1

 () x cosh
1

 ()

2

2

 x sinh

1
 (

1
) 2 cosh

1
 (

 3)

 2 2

 cos(2 cosh

1(2
x
))

Find y for each entered value for the three equations at the same time.

Hint: sinh
1

(u) ln(u u
2
 1) and cosh

1
(u) ln(u u

2
 1)

126

888
 Chapter Four: Operators & Functions

• Write a VB program to find and print the area and the perimeter

(circumference) for the shape below from the following equations:

 a

Area
1

h (a b)

2

θ

h

Perimeter a b h (csc() csc()) ø

b

Enter the unknown variables via an input boxes then print the result on

two message boxes. Use the user function to define any unknown

functions.

2) Write a VB program to find and print Y from the following

equation:

 cosh(x) sinh
2
 (x) 4 cosh(x). sinh(x)

Y

4 x 2 2 sinh(x) cosh 2 (x) 6

Use the user function to define the sinh() and cosh() functions using the

relations:

Sinh(x)=
e

x
 e

x

andCosh(x)=
e

x
 e

x

2 2

127

18828
 Chapter Five: Conditional Statements & Functions

CHAPTER FIVE

Conditional Statements and Functions

Introduction

Computers cannot think on their own, but with your help they can be

taught to make decisions based on values contained in controls and

variables. Visual Basic's decision- making capability enables it to

calculate applications based on certain conditions, to print exception

reports, and to check user responses by means of the form's controls. In

this chapter, you will learn some new programming statements and

functions that you can use along with the ones you already know to

write programs that make data-based decisions. We need the

comparison Operators (Relational and Conditional operators) listed in

the previous chapter to accomplish the conditional statements and

functions.

5-1: Conditional Statements

The relational operators are sometimes called the conditional

operators because they test conditions that are either true or false. The

conditional statements compare values against one another. You can

compare for equality, inequality, and size differences. We can also use

128

829
 Chapter Five: Conditional Statements & Functions

the logical operators to connect two or more conditional operators. In

this section we will illustrate four types of conditional statements:

1. IF- Statement.

2. IF_Else- Statement.

3. IF_Else If- Statement.

4. Select Case- Statement.

5-1-1: IF- Statement

The If-statement uses the relational operators to test data values. It

performs one of two possible code actions, depending on the result of

the test. In other words, the If statement uses the relational operators

to test data and might execute one or more lines of subsequent code,

depending on the results of the test. The If-statement makes

decisions. If a relational test (condition) is true, the body of the If-

statement (comment) will executed. Here is the format of If-

statement :

If (Condition) Then

Comment

End If

The End If statement informs Visual Basic where the body of the If

statement ends.

There is a shortcut form of If statement that you might run across.

The single-line If statement has a format that looks like this:

If (Condition) Then Comment

129

831
 Chapter Five: Conditional Statements & Functions

The single-line If does not require an End If statement because

relational test and the body of the If reside on the same line. The flow

chart that represents the If statement is shown in figure (5-1).

FALSE
Condition

TRUE

 Comment

Figure(5-1): If-Statement flowchart

Example-1

This program will learn you how to deal with keyboard keys. Write a

VB program to display the message ("You Click F9 Button") if you

click the key F9 from the keyboard and the message ("You Click F10

Button") if you click the key F10.

Solution

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)

If KeyCode = 120 Then

MsgBox "You Click F9 Button"

End If

If KeyCode = 121 Then

MsgBox "You Click F10 Button"

End If

End Sub

130

838
 Chapter Five: Conditional Statements & Functions

5-1-2: IF_Else - Statement

Whereas If-statement executes code based on the relational test's true

condition, the Else statement executes code based on the relational test's

false condition. Else is actually part of the If-statement. Here is the

complete format of the If-Else statement :

If (Condition) Then

Comment-1

Else

Commment-2

End If

The flow chart that represents the If_Else- statement is shown in figure

(5-2) below:

FALSE
Condition

TRUE

Comment-2 Comment-1

Figure(5-2): If_Else- Statement flowchart

131

832
 Chapter Five: Conditional Statements & Functions

Example-2

Write a VB program to find a solution for the following equation:

Z
 X Y

Where X Y 0 , X 0

X

Enter X and Y and print Z then display the message "Wrong Values"

on a message box if the two conditions above are not satisfied.

Solution

Private Sub Form_Click()

Dim X!, Y!, Z!

X = Val (InputBox ("Enter the value of X"))

Y = Val (InputBox ("Enter the value of Y"))

If (X + Y) >= 0 And X > 0 Then

Z = (Sqr (X + Y)) / X

Print "The value of Z is:"; Z

Else

MsgBox "Wrong Values", vbCritical, "Error"

End If

End Sub

132

833
 Chapter Five: Conditional Statements & Functions

Example-3

Design a VB project labeled "Lucky Seven" contains the command

"Spin" and four text boxes. When we click the command, a three

randomly generated numbers will appear on the three text boxes. If one

of these boxes contains number 7 the string "You Win" will appear on

the fourth text box else the string "You Loss" appeared.

Solution

Private Sub cmdSpin_Click()

Dim A%, B%, C%

A = 10 * Rnd

B = 10 * Rnd

C = 10 * Rnd

Txt1.Text = A

Txt2.Text = B

Txt3.Text = C

If (A = 7) Or (B = 7) Or (C = 7) Then

txtResult.Text = "You Win"

Else

txtResult.Text = "You Loss"

End If

End Sub

133

834
 Chapter Five: Conditional Statements & Functions

5-1-3: IF_ElseIf- Statement

The If and If-Else statement is great when you must test against

more than two conditions, however, the If and If-Else becomes

difficult to maintain. Although the logic of the If-Else statement is

simple, the coding is extremely difficult to follow. Visual Basic

supports a statement, called If-ElseIf, which handles such multiple-

choice conditions better than If-Else.

Here is the format of the If-ElseIf statement and also its flowchart

shown in figure (5-3):

If (Condition-1) Then

Comment-1

Else If (Condition-2) Then

Comment -2

Else If (Condition-n) Then

Comment-n

Else

Any Comment

End If

134

835
 Chapter Five: Conditional Statements & Functions

 FALSE Condition- TRUE

 1

 FALSE Condition- TRUE Commen-1

 2

 Comment-2

FALSE
Condition-

TRUE

 n

 Comment-n

Any Comment

Figure(5-3): If_Else If- Statement flowchart

Example-4

Design a VB project contains three text boxes. The first is used to enter

a number represents a centigrade degree. The second text box displays

the Fahrenheit degree that generated from the first degree according to

the relation (F= (9/5) * C +32). The third text box is used to display the

below phrases according to their equivalent Fahrenheit degree:

“Cold” when F ≤ 41.

“Nice” when 41< F ≤ 77.

“Hot” when F >77.

135

836
 Chapter Five: Conditional Statements & Functions

Solution

Private Sub Form_Click()

Dim C!, F!

C = Val (txtC.Text)

F=(9/5)*C+32

txtF.Text = F

If (F <= 41) Then

txtResult.Text = "Cold"

ElseIf (F > 41) And (F <= 77) Then

txtResult.Text = " Nice"

ElseIf (F > 77) Then

txtResult.Text = "Hot"

End If

.End Sub

5-1-4: Select Case- Statement

The Select Case statement is a good substitute for long, nested

If-ElseIf conditions when one of several choices is possible. You set up

your Visual Basic program to execute one set of Visual Basic

statements from a list of statements inside Select Case.

Select Case can have three Case value sections based on three kinds of

matches:

1. An exact Case match to Select Case's Expression

2. A conditional Case match to Select Case's Expression

3. A range of Case matches to Select Case's Expression

136

837
 Chapter Five: Conditional Statements & Functions

First format: An exact Case match to Select Case's Parameter. The

format of this case is as shown:

Select Case Parameter

Case no.1

Comment-1

Case no.2

Comment-2

. .

. .

. .
Case no.n

Comment-n

Case Else

Any Comment

End Select

Where no.1 to no.n are integer numbers

Example-5

Design a VB project contains a combo box and a text box. The combo

box contains a list of countries (Iraq, Germany, Lebanon, Egypt,

France) added through the code. The capital of this country will be

displayed on the text box when you select any of these countries from

the combo box.

137

838
 Chapter Five: Conditional Statements & Functions

Solution

Private Sub Form_Load()

Combo1.AddItem “Iraq”

Combo1.AddItem “Germany”

Combo1.AddItem “Lebanon”

Combo1.AddItem “Egypt”

Combo1.AddItem “France”

End Sub

Private Sub Combo1_Click()

Select Case Combo1.ListIndex

Case 0

txt1.Text = "Baghdad"

Case 1

txt1.Text = "Berlin"

Case 2

txt1.Text = "Beirut"

Case 3

txt1.Text = "Cairo"

Case 4

txt1.Text = "Paris"

End Select

End Sub

Country capital

138

839
 Chapter Five: Conditional Statements & Functions

Second format: A conditional Case match to Select Case's

Expression. The format of this case is as shown:

Select Case Expression

Case Is (Condition-1)

Comment-1

Case Is (Condition-2)

Comment -2

Case Is (Condition-n)

Comment -n

Case Else

Any Comment

End Select

Example-6

Write a VB program to solve the below equations depending on the

entered X value.

 X
3
 3e

X

 , X0

 2 , 0 X 3

Y Sin(X) Cos(X)

 Ln(X) Tan(X) , 3X9

, X 9

 Sin
2
 (X) X

3

139

841
 Chapter Five: Conditional Statements & Functions

Solution

Private Sub Form_Click()

Dim X!, Y!

Const Pie = 22 / 7

X = Val (InputBox ("Input the X value ", "X"))

Select Case X

Case Is <= 0

Y = X ^ 3 + 3 * Exp(-X)

Case Is > 0 And X <= 3 * Pie

Y = Sin(X) + Cos(X ^ 2)

Case Is > 3 * Pie And X <= 9 * Pie

Y = Log (X) + Tan (X)

Case Is > 9 * Pie

Y = (Sin(X)) ^ 2 + X ^ 3

End Select

Print "Y=";Y

End Sub

Third format: A range of Case matches to Select Case's Expression.

The format of this case is as shown:

140

848
 Chapter Five: Conditional Statements & Functions

Select Case Expression

Case Val.1 to Val.2

Comment -1

Case Val.3 to Val.4

Comment -2

. .

. .

Case Val.n to Val.n+1

Comment -n

Case Else

Comment-n+1

End Select

Where Val.1 to Val.n+1 are any numbers.

Example-7

Write a VB program to view the student

Grade in a message box from the below

table when we enter its degree in an

input box and when we click the

command "Show".

Solution

Degree

Grade

0-49 Weak

 50-59 Fair

60-69 Medial

 70-79 Good

80-89 Very Good

 90 - 100 Excellent

Private Sub cmdShow_Click()

Dim D As Single

D = Val (InputBox("Enter the degree", "Degree"))

141

842
 Chapter Five: Conditional Statements & Functions

Select Case D

Case 0 To 49

MsgBox "The Grade is Weak"

Case 50 To 59

MsgBox " The Grade is Accept"

Case 60 To 69

MsgBox " The Grade is Medial"

Case 70 To 79

MsgBox " The Grade is Good"

Case 80 To 89

MsgBox " The Grade is Very Goodا"

Case 90 To 100

MsgBox "Excellent"

Case Else

MsgBox " The Grade is Wrong degree"

End If

End Sub

Note: We can use all Select Case formats in the same problem.

142

843
 Chapter Five: Conditional Statements & Functions

5-2: Conditional Functions

In addition to Conditional statements we can use the Conditional

function to represent the problems that has many conditions. The

advantage of these function is simplicity to the use in problems in a

single line step. The only difference between the conditional statements

and functions is that the second contains many parameters enclosed by

brackets but the first did not contain any brackets. So we can divide the

conditional function to three types:

5. IIF- Function

6. Choose- Statement

7. Switch- Statement

5-2-1: IIF- Function

This function is the same as If_Else- Statement, so its contain a single

condition and two comments as shown in its form:

Var = IIF (Condition , Comment-1 , Comment -2)

Where:

Var: The restore value from the return comparison result.

Comment-1: If condition is satisfied.

Comment-2: If condition is not satisfied.

143

844
 Chapter Five: Conditional Statements & Functions

Example-8

Write a VB program to enter any number (X) then number. Display the

result on the form and on a message box.

Solution

Private Sub Form_Click()

Dim X!, Y$

X = Val (InputBox ("Enter any number"))

Y = IIf (X Mod 2 = 0, "even number", "Odd number")

Print Y

MsgBox Y

End Sub

5-2-2: Choose- Function

This function is the same as Select Case-Statement (First format), so its

contain many comments (Comment-1 to Comment-n) that can be

selected according to agreement of the parameter value which is varies

from 1 to n according to the comment number selection as shown in its

form:

Var = Choose (Parameter , Comment-1 , Comment-2 , ….. , Comment-n)

Example-9

Write a VB program to enter two numbers (X and Y) then enter the

operation number (N) according to the following: 1. Addition 2.

Subtraction 3. Multiplication 4. Division. Display the result on a

message box.

144

845
 Chapter Five: Conditional Statements & Functions

Solution

Private Sub Form_Click()

Dim X!, Y!, N%, Sol!

X = Val(InputBox("Enter the first number"))

Y = Val(InputBox("Enter the second number"))

N = Val(InputBox("Enter your operation choice from 1 to 4"))

Sol = Choose(N, X + Y, X - Y, X * Y, X / Y)

MsgBox Sol

End Sub

5-2-3: Switch- Function

This function is the same as Select Case- Statement (second format) or

If_Else If- Statement, so its contain many conditions (Condition.1 to

Condition.n) and many comments (Comment-1 to Comment-n) that can

be selected successively according to the following form.

Var = Switch (Condition-1 , Comment-1 _

Condition-2 , Comment-2 _

. . .

. . .

. . .

. . .

Condition-n , Comment-n)

Note: In Visual Basic, the Under score symbol (_) represent a

completion for this line in the next line.

145

846
 Chapter Five: Conditional Statements & Functions

Example-10

If you know that the Tax office takes a tax for the imported goods

according to their degrees as shown:

Goods degree

Tax

 “A” 40%

 “B” 10%

 “C” 5%

 “D” 2%

 “E” 1%

Write a VB program to enter the goods price and its degree then print

the tax according to the table above.

Solution

Private Sub Form_Click()

Dim G$

Dim Tax As Currency

Dim Price As Currency

Price = Val (InputBox ("Enter the goods price"))

D = UCase (InputBox ("Enter the tax degree"))

Tax = Switch (D = "A", 0.4 * Price, _

D = "B", 0.1 * Price, _

D = "C", 0.05 * Price, _

D = "D", 0.02 * Price, _

D = "E", 0.01 * Price)

Print "Tax="; Tax

End Sub

146

847
 Chapter Five: Conditional Statements & Functions

5.3: Problems

Note: Use several methods to solve the same question.

8. Write a VB program to enter two numbers then compare them and
display the compression result on a message box.

9. Write a VB program to enter a number then display the message "Even
Number" if the entered number is even and the message "ODD Number"
if it is odd.

10. Write a VB program to enter a string then display the message

boxes "Greater than 6 characters", "Less than 6 characters", and "Equal to
6 characters" if this number was greater, less, and equal to six characters
respectively.

11. Write a VB program to enter a character represent the person
gender (M: for male, F: for female) and a number represents person

length ((L) in inch) then find and print its perfect weight ((W) in pound)
according to the following relations:

For male (M) : W = (L × 4) - 125

For female (F): W = (L × 3.5) – 108

6. Suppose the random bank offers 9% interest on balances of less than

$5000, 12% for balances of $5000 or more but less than $10000, and
15% for balances of $10000 or more. Write a VB program to enter a

person balance then calculates a customer’s new balance after one year.

7. Write a VB program to find W from the equations:

:X0,Y 0

XY

 2 3
5X :X0,Y0 WX Y

 2 X
 4 X :X0,Y 0

3Y

Print W for each input values of X and Y.

147

848
 Chapter Five: Conditional Statements & Functions

10.Write a VB program to find the roots (X1, X2) for the quadratic

equation: ax
2
+bx+c using the formula:

 b b
2
 4ac

X
1

,

X
 22a

Enter the constants (a, b, c) then check the following points:

 if a= 0 display the message "Divided by zero".

 if b2 < 4ac display the message "No real roots".
 if b2 = 4ac display the message "Equal roots" then find the roots

from the formula above.
 if b2 > 4ac display the message "real roots" then find the roots

from the formula above.

6. Write a VB program to enter a number represents a person age then

display the following on a message boxes:

 "Wrong age" if the age less than or equal to 0 years.

 "Child" if the age less than 8 years.

 "Boy" if the age greater than or equal to 8 years.

 "Young" if the age greater than or equal to 18 years.

 "Old" if the age greater than or equal to 35 years.

 "Very Old" if the age greater than or equal to 65 years.

7. Write a VB program to find z from the below equations.

2k sin(k)

z

k 2

k

 k 1

 k 2

 k 3
 k 1 or k 3

Print z for each input value of k.

148

849
 Chapter Five: Conditional Statements & Functions

 Write a VB program to find x from the below equations according

to your choice entry from 1 to 4.

 x = sin (t) + tan (t)

 x = cosh (t
3
 + 2t)

 x = sec
2
 (4t) + t

2

 x = 0.25 t
4
 + t

2

Print x for each input value of t. Define the unknown functions.

 Write a VB program to find and print T from the below equations

where a and b are input variables.

a
2

 ab

a b AND a 10

 ab

T

 5b a b OR b 10

ab
2
 2a

 By using Switch function write a VB program to enter any number

then display the following on a message box:

1- "Divisible by 7" if the entered number can be divisible by
7. 2- "Odd number" if the entered number was odd number.
3- "Even number" if the entered number was even.

 Define f(x) as follows:

Write a VB program to calculate f(x) from the above equation

then print f(x) for any input value of x.

149

041
 Chapter Six: Looping Statements & Arrays

CHAPTER SIX

Looping Statements and Arrays

Introduction

We need loops in the program to repeat an operation or group of

operations to specific (or non specific) number of times. These

statements are used to create the counters and arrays. This chapter

describes how you can add looping to Visual Basic programs so that

the programs can process several data values using looping

statements. Loops also enable you to correct user errors and repeat

certain program functions when the user requests a repeat. The

second half of this chapter we will learn the arrays which gives you

another way to reference data than by using a different variable

name. Each element in the array, however, is a unique variable

known by its array name and subscript.

150

040 Chapter Six: Looping Statements & Arrays

6-1: Looping Statements

In this chapter we will discuss four types of looping statements used

to build the counters:

8. For-Next statement

9. Do While- Loop statement

10. While- Wend statement

11. Do Until- Loop statement

6-1-1: For _Next- Statements

The For-Next statement repeats statements for a specified number

of times. The format of this statement always begins with the For

statement and ends with the Next statement as shown below:

For CounterVar = StartVal To EndVal Step step_size

 The repeated statements

Next CounterVar

Where:

CounterVar: A variable represents the counter.

StartVal: A number represents the starting value for the counter.

EndVal: A number represents the Ending value for the counter.

Step-size: A number represents the increasing (or decreasing) value

for the counter.

151

041 Chapter Six: Looping Statements & Arrays

Example-1

Write a VB program to find the factorial of any integer number (N!)

Hint: Factorial (N) = N! = 1 × 2 × 3 × ……. × N

Solution:

Private Sub Form_Click()

Dim N%, I%, F#

N = Val (InputBox ("Enter any number"))

F = 1

For I = 1 To N

F=F *I

Next I

Print "Factorial of"; N; "="; F

End Sub

Example-2

Write a VB program to find the value of S from the following series:

SN
1

(X N)

I1

I

152

042 Chapter Six: Looping Statements & Arrays

Solution:

Private Sub Form_Click()

Dim X!, N%, I%, S#

N = Val (InputBox ("Enter N"))

X = Val (InputBox ("Enter X"))

S = 0

For I = 1 To N

S=S+(1/I)*(X+N)

Next I

Print S

End Sub

6-1-2: Do While_Loop- Statement

The Do While statement works with relational expressions just

as the If statement does. Therefore, the six relational operators work

as expected here. Like the If statement that ends with an End If

statement, a loop will always be a multi-line statement that includes

an obvious beginning and ending of the loop. Here is the format of the

Do While loop:

Do While (relational test)

 The repeated statements

Loop

153

043 Chapter Six: Looping Statements & Arrays

To modify the For-Next statement to the Do While so to work as a

counter we will use the following format according to the previously

defined values as shown below:

CounterVar = StartVal

Do while (CounterVar <= EndVal)

 The repeated statements

CounterVar = CounterVar + step_size

Loop

Example-3

Write a VB program to find S from the following series. Use the Do

While_Loop- statement.

S 1
2

3 n

(a b)
3

 (a b)
n

 a b (a b)
2

Find the value of S for each input values of a, b and n.

Solution:

Private Sub Form_Click()

Dim a!, b!, n%, I%, s#

a = Val (InputBox ("Enter the value of a"))

b = Val (InputBox ("Enter the value of b"))

n = Val (InputBox ("Enter the value of n"))

154

044 Chapter Six: Looping Statements & Arrays

s = 0

I = 1

Do While (I <= n)

s = s + (I / ((a + b) ^ I))

I=I+1

Loop

Print a; b; n; s

End Sub

6-1-3: While_Wend- Statement

The While-Wend statement works with relational expressions just

as the Do While statement does. The format of the While-Wend loop is:

While (relational test)

 The repeated statements

Wend

And to make it work as a counter use the following format:

CounterVar = StartVal

While (CounterVar <= EndVal)

 The repeated statements

CounterVar = CounterVar + step_size

Wend

155

045 Chapter Six: Looping Statements & Arrays

Example-4

Write a VB program ask the officer to enter his name (N), age(A), and

his first salary (F). If you know that this salary is increased 5% per year.

Using (While_Wend- Statement, find and print the overall salaries that

this officer can get it until he reach the retirement age (65) year.

Solution:

Private Sub Form_Click()

Dim N$, A!, F#

N = InputBox("enter officer name")

A = Val (InputBox("enter officer age"))

F = Val (InputBox("enter officer first salary"))

While (A <= 65)

F=F+0.05*F

A=A+1

Wend

Print N; F

End Sub

156

046 Chapter Six: Looping Statements & Arrays

6-1-4: Do Until_ Loop- Statement

Whereas the Do While-Loop continues executing the body of the

loop as long as the relational test is true, the Do Until-Loop executes

the body of the loop as long as the relational test is false. The format

of the Do Until is as shown:

Do Until (relational test)

 The repeated statements

Loop

And the counter format is:

CounterVar = StartVal

Do Until (CounterVar > EndVal)

 The repeated statements

CounterVar = CounterVar + step_size

Loop

157

047 Chapter Six: Looping Statements & Arrays

Example-5

Two cars (C1 and C2), at time 0 hour the first car speed was 150

km/h and the second was 50 km/h. If the first car speed increased by

a rate of 2% per hour and the second 6% per hour. At what time will

the second car reach the first? Write a VB program to clear that (Use

Do Until_Loop- Statement).

Solution

Private Sub Form_Click()

Dim T!, C1!, C2!

T=0:C1=150:C2=50

Do Until (C2 >= C1)

C1=C1+0.02*C1

C2=C2+0.06*C2

T=T+1

Loop

Print "At Time:"; T; "Hours"; "C2 will reach C1"

Print C1

Print C2

End Sub

158

048 Chapter Six: Looping Statements & Arrays

6-2: Nested Loops

Its so called because it contains many loop statements nested

together without any intersections. As shown in figure below there are

many loops,the Do While loop is called the outer loop the other loops

is called the inner loops. The outer loop is closed finally and the last

inner loop is closed firstly. The advantage of these loops is to build

the Arrays that we will study it in the next section.

 For I = 1 To N.

 For J = 1 To M

 Outer Inner

 Loop Loop The repeated statements

 Next J

 Next I

Example-6

Write a VB program to find and print the multiplication table from 1 to

10.

Solution:

Private Sub Form_Click()

Dim I%, J%, P%

159

051 Chapter Six: Looping Statements & Arrays

For I = 1 To 10

For j = 1 To 10

P=I*J

Print P;

Next J

Print

Next I

End Sub

Example-7

Write a VB program to find the value of S from the following

equation:

5 7

S (IJ)

I1 J1

Solution:

Private Sub Form_Click()

Dim I%, J%, M%, S%

M=0:S=0

For I = 1 To 5

For J = 1 To 7

M=M+(I+J)

Next J

S=S+M

Next I

Print "S="; S

End Sub

160

050 Chapter Six: Looping Statements & Arrays

6-3: Arrays

Variable can reserve a one cell from the computer memory so we

can reserve many variables that are similar in name and data type in

one variable contain the same name but many locations. The resulted

variable is called array and these locations represented by a single

loop called subscript. We can work with individual array elements as

if they were stand-alone variables by accessing their individual

subscripts. The array subscript enables you to access one or more

elements from the array. The big advantage that arrays provide is

enabling your program to step through the entire array using a For

loop's control variable as the subscript. As an example below

illustrates an array named (A) contains four elements and subscript

named (I). This array may be written in horizontal or vertical manner.

a(0) a(1) a(2) a(3)

A(I) = A(4) =

Or vertically:

a(0)

a(1)

A(I) = A(4) =

a(2)

a(3)

161

051
 Chapter Six: Looping Statements & Arrays

Ex : An array N(5) with numeric elements:

 n(0) n (1) n(2) n(3) n(4)

N(5) =

20 45 67 83

 11

Ex : An array S(4) with string elements:

 s(0) s(1) s(2) s(3)

S(4) =

Name Degree

Sum Average

6-3-1: Declaring Arrays

We usually use the Dim-statement to declare a standard array using

the form:

Dim Array-Name (Index) As Data-Type

If we want define the array using any starting and ending values for

index:

Dim Array-Name (Initial to Final (index)) As Data-Type

162

052 Chapter Six: Looping Statements & Arrays

6-3-2: Read, Generate, Input, and Print Arrays

Reading arrays is used when the elements are known. The value of

any element is entered directly.

Ex : Write a VB program to read the below array B(4).

32

48

B(4) =

67

18

Sol:

Private Sub Form_Click)(

Dim B(1 To 4) As integer

B(1)=32: B(2)=48: B(3)=67: B(4)=18

End Sub

Generating arrays can be done by the use of the statement Rnd which

is used when we want to generate numbers randomly in the interval

[0, 1]. We can use this statement to generate numbers in the interval

[0, N] only we have to product N by this statement. Loops are needed

in such case.

163

053 Chapter Six: Looping Statements & Arrays

Ex : Write a VB program to generate the elements randomly in the

interval [0, 10] for the array C(8).

Sol:

Private Sub Form_Click)(

Dim C(1 To 8) As integer

For I = 1 To 8

C(I) = 10* Rnd

Next I

End Sub

Inputting arrays is used when we do not have the values of the array

elements or if we have to enter its elements in the program. Loops are

needed for inputting arrays.

Ex : Write a VB program to input the elements for the array A(4).

Sol:

Private Sub Form_Click)(

Dim A(1 To 4) As Single

For I = 1 To 4

A(I) = Val(InputBox("Enter elements of A", I((

Next I

End Sub

164

054 Chapter Six: Looping Statements & Arrays

Finally, printing arrays is used when want to view our resultant array

on the form.

Ex : Write a VB program to print the array D(6) horizontally.

Sol:

For I = 1 To 6

Print D(I);

Next I

Note :

If you want to print it vertically remove the semicolon symbol (;)

Example-8

Write a VB program to enter the array elements A(6) then display the

array B(6) which contain the reversed A elements.

Solution

Private Sub Form_Click()

Dim A(1 To 6), B(1 To 6) As Single, I%

For I = 1 To 6

A(I) = Val (InputBox("Enter (A) element", I))

Next I

For I = 1 To 6

B(I) = A(7 - I)

Next I

Print "A(I)"; Tab(8); "B(I)"

For I = 1 To 6

Print A(I); Tab(8); B(I)

Next I

End Sub

165

055 Chapter Six: Looping Statements & Arrays

Example-9

Write a VB program to enter the elements of two lists. Each list

contain (14) elements then display the array C(14) contain the mean

between opposite numbers in the two lists.

Solution

Private Sub Form_Click)(

Dim A(1 To 14), B(1 To 14), C(1 To 14) As Single, I%

For I = 1 To 14

A(I) = Val(InputBox("Enter elements of A", I((

B(I) = Val(InputBox("Enter elements of B", I((

C(I) = (A(I) + B(I)) / 2

Next I

Print "A(I)"; Tab(8); "B(I)"; Tab(8); "C(I)"

For I = 1 To 14

Print A(I); Tab(8); B(I); Tab(8); C(I)

Next I

End Sub

166

056 Chapter Six: Looping Statements & Arrays

6-3-3: Array Operations

In this section we will discuss the most used operations on arrays.

These operations can be summarized in the following points:

 Finding Maximum and Minimum value.

 Sorting (ascending or descending)

 Summing elements.

 Replacing elements.

6-3-3-1: Finding Maximum and Minimum value

To find the maximum or minimum element in the array, follow these

steps:

Step-1: set the first element to a variable named "Max" (or Min)

Step-2: open a loop then compare this variable with the other array

elements.

Step-3: if the compared elements greater that (or smaller) than

"Max" (or "Min") then set this element as the new maximum (or

minimum) value.

Step-4: if the condition in step-2 is satisfied, the old maximum (or

minimum) value will not change.

Step-5: print the maximum (or minimum) element which is stored in

the variable Max (or Min).

167

057 Chapter Six: Looping Statements & Arrays

Example-10

You have the array A(10), write a VB program to find and print the

maximum and minimum value in this array and locate its position.

Solution

Max = A(1)

Min = A(1)

For I = 1 To 10

If A(I) > Max Then

Max = A(I)

L1=I

End If

If A(I) < Min Then

Min = A(I)

L2=I

End If

Next I

Print "Maximum = "; Max; "At Location"; L1

Print "Minimum = "; Min; "At Location"; L2

End Sub

168

058 Chapter Six: Looping Statements & Arrays

6-3-3-2: Sorting in ascending or descending manner

The other important application used in arrays is to sort its elements in

ascending or descending manner. To do this we must follow the

following steps:

Step-1: open two loops (named I and J). Loop (I) begun from 1 to

(N-1) and (J) from I+1 to N, where N is an integer number represents

the array size.

Step-2: compare each element in the array with the other remaining

elements, that is satisfied in the relation (A(I) > A(J)) for ascending

and (A(I) < A(J)) for descending.

Step-3: if the condition in step-2 is satisfied then interchange these

values. Not that with interchanging you must use a variable (say T) to

work as a memory to avoid losing the values, as T = A(I): A(I) = A(J):

A(J) = T

Step-4: if the condition in step-2 is not satisfied, the elements will

stay without any change.

Step-5: print the same array (after sorting).

169

061 Chapter Six: Looping Statements & Arrays

Example-11

Write a VB program to generate randomly the array B(20) then sort

and print this array in ascending manner.

Solution

Dim B!(1 To 20)

Randomize

For i = 1 To 20

B(i) = 10 * Rnd

Next i

For i = 1 To 19

For J = i + 1 To 20

If B(i) > B(J) Then

T = B(i): B(i) = B(J): B(J) = T

End If

Next J

Next i

For i = 1 To 20

Print B(i)

Next i

170

060 Chapter Six: Looping Statements & Arrays

6-3-3-3: Summing array elements

To find the sum we must first name the variable (say Sum) as the sum

of all elements. Then follow these steps: Step-1: set the initial value

for the variable (Sum) before open the

loop.

Step-2: put the cumulative sum equation (Sum=Sum+Array

elements) for the Sum variable.

Step-3: print the variable (Sum) after the next of the loop.

Note: We can follow these steps in multiplication operation but

change the variable name to Prod and set its initial value to (1) then

convert the plus sign in step-3 (+) to prod sign (*).

Example-12

You have the array A(10), write a VB program to find and print the

sum and product of all array elements.

Solution

Sum = 0: Prod=1

For I = 1 To 10

Sum = Sum + A(I)

Prod = Prod * A(I)

Next I

Print "Sum of A elements="; Sum

Print "Prod of A elements="; Prod

171

061 Chapter Six: Looping Statements & Arrays

6-3-3-4: Replacing elements

This operation is used if desired to replace an array elements with

another elements in the same array. To do this we must follow these

steps:

Step-1: first, we must limit the replacing elements by the use of

loops. Open loop (I) to limit the replacing elements.

Step-2: before replacement we must find a relation between the

interchanging elements (usually addition by a constant number) then

use the previously defined variable (T) to work as a memory, as T =

A(I): A(I) = A(I+const): A(I+const) = T Step-3: print the resultant

array after replacing its elements.

Example-13

Write a VB program to generate randomly the element of array S(30),

then replace the first five elements with the last five and print the two

arrays.

Solution

Dim S%(1 To 30), I%

Randomize

For I = 1 To 30

S(I) = 10 * Rnd

Print S(I);

172

062 Chapter Six: Looping Statements & Arrays

Next I

For I = 1 To 5

T = S(I): S(I) = S(I + 25): S(I + 25) = T

Next I

Print

For I = 1 To 30

Print S(I);

Next I

6-3-4: Control Array

A control array is nothing more than a list of controls, just as a

variable array is a list of variables. The advantage to using a control

array is the same as for using a variable array: You can step through

several variables using a loop instead of having to name each

individual control.

Visual Basic supports one technique for control arrays that you'll find

yourself using a lot, even though collections are always available to

you. When you copy a control and paste that control back onto the

form, Visual Basic displays the message box shown below:

173

063
 Chapter Six: Looping Statements & Arrays

You might wonder why you'd ever copy and paste a control, but if you

need to place several commands buttons or labels that all have the

same format—perhaps the same font size and caption alignment—it's

a helpful technique. You just create one control, set all its properties.

As soon as you paste the copied control, Visual Basic displays the

message box shown previously. If you answer Yes, Visual Basic

automatically creates a control array with a name that matches the

first control.

For example, if the first control is a command button named

Command1, the array is named Command1, and the elements begin at

Command1(0) and increment as long as you keep pasting the control.

Your code then can step through all the control array elements from

Command1(0) through Command1(n), where n is the total number of

Command1 controls on the form, and set properties for them.

174

064 Chapter Six: Looping Statements & Arrays

Example-14

By using control array, write a VB program to design the calculator

shown below with their objects property. Use the control array to

define the command numbers and another array to define the four

basic operations.

Solution

Dim a As Double

Dim b As Double

Dim Operator As String

Dim result As Double

Private Sub cmdclear_Click()

lblview.Caption = ""

End Sub

Private Sub cmdnumbers_Click(Index As Integer)

lblview.Caption = lblview.Caption + cmdnumbers(Index).Caption

End Sub

Private Sub cmdmMathOp_Click(Index As Integer)

a = Val(lblview)

lblview.Caption = ""

175

065 Chapter Six: Looping Statements & Arrays

Select Case Index

Case 0 Label Box: lblview

Operator = "+"
Command Box: cmdclear

Command Box: cmdresult

Case 1 Command Array(10): cmdnumbers

Operator = "-"
Command Array(4): cmdMathOp

Case 2

Operator = "*"

Case 3

Operator = "/"

End Select

End Sub

Private Sub cmdequal_Click()

b = Val(lblview.Caption)

Select Case Operator

Case "+"

result = a + b

Case "-"

result = a - b

Case "*"

result = a * b

Case "/"

result = a / b

End Select

lblview.Caption = result

End Sub

176

066 Chapter Six: Looping Statements & Arrays

6.4 Problems

 Write a VB program to enter 20 degrees then calculate and print

the percentage rate for the degrees greater than 60% but less than

70%.

 Write a VB program to enter 25 numbers then calculate and print

their sum if one of them was negative and their product if one of

them was even.

 Write a VB program to enter 60 numbers then compute and print:

1- The sum of all integers between 2 and 60 those are divisible by 2.

2- Sum of odd numbers.

3- Number of even numbers.

 A list contains the degrees of 80 students in computer course.

Write a VB program to find the succeeding rate after entering the

student's degrees.

Hint: Succeeding rate = (number of success students / total number) × 100 %

 Write a VB program to find the value of X where:

X = A
3
*B

2
/A

3
+B

2

For 10 entered values of A and B, use functions ("cube" and" square")

to define A
3
 and B

2
 respectively. Display the results on a message

box.

177

067 Chapter Six: Looping Statements & Arrays

 Write a VB program to enter a name and age for 100 persons then

find and print:

1- The ages between 6 and 12 years, then display the message "he

(she) is in the primary school" on another message if the age lies

in the mentioned range.

2- Display the last three letters of the first name, if the name consists

of three letters or more.

 Write a VB program to find and print the value of m from the

following series:

 = e
-1

. e
-2

. e
-3

…… e
-18

• Write a VB program to find and print the value of m from the

following equation:

m

a x
i
 y

i

i 1

Where x= 0.7, y= 1.5, and m= 12.

3) Write a VB program to find and print tan
-1

(x) by the use of the

following series:

tan
1

 (x) x x 3 x 5 x 7 x 9 x 99

3 5 7 9 99

Input x then find and print tan
-1

(x) from the above series.

178

068 Chapter Six: Looping Statements & Arrays

3) Write a VB program to find e
-1

(x) using the following series up to

100 terms:

e x 1x
x2

x3...
xn

2! 3! n!

Input x then find and print e
x
 from the above series.

11. Write a VB program to find and print the following series:

series (x) x x
3

 x
5

 x
7

 x21

120 5040 5.1 E19

6

12. Write a VB program to find and print P from the following

equation where r= 1, 2, 3, 4, 5, 6 and n=6. Implement the function

fac(x) to find the factorial of any integer number.

p n!

(n r)!r!

 In the year 1987 the Iraq census was 17, 000, 000 and the Egypt

census was 50, 000, 000, if you knew that the population increment

rate for Iraq 4% per year and population increment rate for Egypt

was 3% per year. In what year the Iraqi census can exceed the

Egypt census? Write a VB program to solve this problem.

4. Write a VB program to find the current in any branch and the

voltage for any resistance in the circuit below if you knew that RL

changes from 100 to 1000 in steps of 100. Print the current

and voltage in branches for each value of RL

179

071
 Chapter Six: Looping Statements & Arrays

I R1 R3

RL

10A 200 200

 R2 R4

 100 300

10. Write a VB program to enter and print the two arrays M(30) and

N(30), then find and print the value of P from the following equation:

9. 2M (i) * N (i)
 1

30

where λ = 2.15* 10
-22

6. Write a VB program to enter 120 degrees for 60 students in two

objects (physics and mathematics). Store these degrees in two one-

dimensional arrays (P and M) then find and print the following:

6. The mean between two opposite degrees.

7. The succeeding rate in physics

9. For figure shown below write a VB program to store the 5 values

for the 5 resistors in array R(5) then calculate the current flows in each

resistor and store it in another array I(5). Find also the power dissipated

in each resistor and display it on a third array P(5). Print all the resulted

arrays.

180

070 Chapter Six: Looping Statements & Arrays

 R1 R3

 100k 47k

V R2 R4 R5

20 V 10k 10k 100k

7. Write a VB program to find and print the value of (S) from the

following series:

m1 n1

S ai .2
i
 b j .2

j

i 0 j 0

Enter any undefined variables.

8. Write a VB program to enter and print horizontally the array A (20),

then find and print:

1- The first three maximum numbers.

2- The last two minimum numbers.

9. N charges placed on a plate. Write a VB program to enter the value

for the ith charge in an array (Qi) and the distance from the center to the

ith charge in another array (ri) then find and print the electrical potential

(E) in the center of this plate according to the following equation:

E

1

Qi

, where εo= 8.85×10
-12

4 πε r

 o i

181

071 Chapter Six: Looping Statements & Arrays

10. The approximation format to find the square root for number (R) is:

x(i+1)=0.5*(x(i)+R/x(i))

Where x(0) = R and x(1), x(2) …., etc are the approximated values for

the square root of R. Write a VB program to find and print approximate

value for the entered number (R). The program will stopped when the

difference between x(i) and x(i+1) less than (0.001).

22. Write a VB program to store randomly generated elements in array

Xi then find the value of Z from the following equations:

1

n
 D)

4

 n

Z (X Where D n X

i

 n i 1 i i 1

23. Design a VB project contains ten Check Boxes as a control array

and a single List Box. When you click any of Check Boxes their

names will be displayed on the list box

24. Design a VB project contains 26 commands array represent the

English alphabets. The project also contains a text box and two

command boxes "Erase" and "Space". Add a string of alphabets by

the use of commands array through the text box. If you click the

command "Space" a space will added into the string and if you click

the command "Erase" the string in the text box will be erased.

182

381
 Chapter Seven: Matrices

CHAPTER SEVEN

MATRICES

Introduction

The Matrix is another way to format data as rows and columns if

they have the same type of data. So the matrix is a two dimensional

array contain two subscripts I and J represents the row and column

indices and has a name as a capital-letter. Example below illustrates

a two dimensional array named (T) contains (12) elements (three

rows and four columns) and two subscripts (I for rows and J for

columns).

1

2

3

4

T (I,J) = T (3,4)

st

nd rd

th

co
lu

m
n

co
lumn

column

column

=

J

 I 0 1 2 3

1
st

 row 0 t (0,0) t (0,1) t (0,2) t (0,3)

2nd row 1 t (1,0) t (1,1) t (1,2) t (1,3)

3rd row 2 t (2,0) t (2,1) t (2,2) t (2,3)

4th row 3 t (3,0) t (3,1) t (3,2) t (3,3)

 183

381 Chapter Seven: Matrices

7-1: Square Matrix

When number of rows is equal to number of columns (say N) the

matrix is called "Square Matrix". This type of matrices has the

following properties:

1- Main diagonal: The group of the a(0,0) a(0,1) a(0,2) a(0,3)

elements that lies between the first

a(1,1) a(1,2) a(1,3)

element in the first row and the last

a(1,0)

a(2,0) a(2,1) a(2,2) a(2,3)

element in the last row. As shown in

a(3,1) a(3,2) a(3,3)

the shaded area: a(3,0)

So: I = J

where:

I is the row index and J is the column index.

2- Secondary diagonal: The group

of the elements that lies between the

last element in the first row and the

first element in the last row. As

shown in the shaded area:

a(0,0) a(0,1) a(0,2) a(0,3)

a(1,0) a(1,1) a(1,2) a(1,3)

a(2,0) a(2,1) a(2,2) a(2,3)

a(3,1) a(3,2) a(3,3)

a(3,0)

So: I = (N-1) – J , if the indices (I and J) started from 0.

and: I = (N+1) – J , if the indices (I and J) started from 1.

184

381 Chapter Seven: Matrices

3- Upper triangle: The group of the a(0,0) a(0,1) a(0,2) a(0,3)

elements that lies above the main

a(1,0) a(1,1) a(1,2) a(1,3)

diagonal as shown in the shaded area: a(2,0) a(2,1) a(2,2) a(2,3)

a(3,1) a(3,2) a(3,3)

 a(3,0)

So: I < J

4- Lower triangle: The group of the a(0,0) a(0,1) a(0,2) a(0,3)

elements that lies below the main

a(1,0) a(1,1) a(1,2) a(1,3)

diagonal as shown in the shaded area: a(2,0) a(2,1) a(2,2) a(2,3)

a(3,1) a(3,2) a(3,3)

 a(3,0)

So: I > J

Ex: Matrix M(3,3) with numeric elements:

 m(0,0)

 16 48 52

M(3,3) = 6 12 3

 2 10 7 m(2,2)

185

381 Chapter Seven: Matrices

Ex : Matrix S(4,4) with literal elements:

 EM AM FG HS

 ENG TL KD UT

S(4,4) =
AD WXY QP WW

 LDS EIP MD ZG

7-2: Declaring Matrices

As in arrays we will use the Dim statement to declare a standard

matrix having two dimensions (note that in Visual Basic, matrices

can have up to 60 dimensions):

If this matrix started at index 0 the declaring format is:

Dim Array-Name (Row Index , Column Index) As Data-Type

Or if we want it start at any starting and ending values of indices we

use this format:

Dim Array-Name (s to e (for I), s to e (for J)) As Data-Type

Where s and e are the starting and ending values for rows and

columns indices (I and J) respectively.

186

381 Chapter Seven: Matrices

7-3: Read, Generate, Input, and Print Matrices

We read the matrix when its elements are known (or given) and their

values are constants during the execution of the program, so the

value of any element is entered directly.

Ex: Write a VB program to read the matrix B(3,3).

 48 32 29

B(3,3) = 67 87 23

 18 60 44

Sol:

Private Sub Form_Click)(

Dim B(1 To 3, 1 T0 3) As integer

B(1,1)=48: B(1,2)=32: B(1,3)=29

B(2,1)=67: B(2,2)=87: B(2,3)=23

B(3,1)=18: B(3,2)=60: B(3,3)=44

End Sub

If the matrix was unknown

randomly use the statement

but we want to generate its elements

Rnd which is used when we want to

187

388 Chapter Seven: Matrices

generate numbers randomly in the interval [0, 1]. We can use this

statement to generate numbers in the interval [0, N] only we have to

product N by this statement. Loops are needed in such case.

Ex: Write a VB program to generate random elements in the interval

[0, 10] for the matrix C(8,8).

Sol:

Private Sub Form_Click)(

Dim C(1 To 8, 1 To 8) As integer

For I = 1 To 8

For J = 1 To 8

C(I, J) = 10* Rnd

Next J

Next I

End Sub

Inputting matrices is already used when we do not have the values of

the matrix elements or its elements may be changed (not constant) in

the program. Loops are needed for such case.

188

381 Chapter Seven: Matrices

Ex : Write a VB program to input the elements for the two

dimensional array A(4,4).

Sol:

Private Sub Form_Click)(

Dim A(1 To 4, 1 To 4) As integer

For I = 1 To 4

For J = 1 To 4

A(I, J) = Val(InputBox("Enter elements of A", I((

Next J

Next I

End Sub

Finally, printing matrices used when want to view our resultant array

on the form. Two loops are used for printing.

Ex : If you have the matrix D(6,6), how can you print it? Write a VB

program to clear that.

Sol:

For I = 1 To 6

For J = 1 To 6

Print D(I, J);

Next J : Print : Next I

189

311 Chapter Seven: Matrices

Example-1:

Write a VB program to enter the matrix A(4,4) then display:

12. The main diagonal elements.

13. The secondary diagonal elements.

14. The upper triangle elements.

15. The lower triangle elements.

Solution

Private Sub Form_Click()

Dim A%(1 To 4, 1 To 4), I%, J%

For I = 1 To 4

For J = 1 To 4

A(I, J) = Val(InputBox("Enter values of A elements", CStr(I) + CStr(J)))

Print A(I, J);

Next: Print: Next

Print "The main diagonal elements are:"

For I = 1 To 4

For J = 1 To 4

If I = J Then

Print A(I, J)

End If

Next: Next

190

313 Chapter Seven: Matrices

Print "The secondary diagonal elements are:"

For I = 1 To 4

For J = 1 To 4

If I = 5 - J Then

Print A(I, J)

End If

Next: Next

Print "The upper triangle elements are:"

For I = 1 To 4

For J = 1 To 4

If I < J Then

Print A(I, J)

End If

Next: Next

Print "The lower triangle elements are:"

For I = 1 To 4

For J = 1 To 4

If I > J Then

Print A(I, J)

End If

Next: Next

End Sub

191

311 Chapter Seven: Matrices

Example-2:

Write a VB program to enter the elements of matrix F(3,5) then

convert it to the array X(15) which has the same row-by-row

elements.

Solution:

Private Sub Form_Click()

Dim F%(1 To 3, 1 To 5), I%, J%, K%

Dim X%(1 To 15)

K = 0

For I = 1 To 3

For J = 1 To 5

F(I, J) = Val(InputBox("Enter values of F elements", CStr(I) + CStr(J)))

Print F(I, J);

K=K+1

X(K) = F(I, J)

Next: Print: Next

Print "----------"

For K = 1 To 15

Print X(K)

Next

End Sub

192

311 Chapter Seven: Matrices

7-4: Matrix Operations

In the following few papers we will discuss the most used matrix

operations. These operations are:

8. Finding Maximum and Minimum value.

9. Summation and production (Rows, Columns, All).

10. Replacement between matrix elements.

7-4-1: Finding Maximum and Minimum value

To find the maximum or minimum element in the matrix, follow

these steps:

Step-1: set the first element to a variable named "Max" (for

maximum) and "Min" (for minimum).

Step-2: open the two loops then compare this variable with the

other elements.

Step-3: if the compared elements greater than "Max" (for

maximum) or less than "Min" (for minimum), set this element as the

new maximum (or minimum) value.

Step-4: if the condition in step-3 is not satisfied, the old maximum

(or minimum) value will not change.

Step-5: print the maximum (or minimum) element which is stored

in the variable Max (or Min).

193

311
 Chapter Seven: Matrices

Example-3

You have the matrix A(10,20), write a VB program to find and print

the maximum and minimum value in this array and locate its position.

Solution

Max = A(1,1)

Min = A(1,1)

For I = 1 To 10

For J = 1 To 20

If A(I,J) > Max Then

Max = A(I,J)

L1=I:L2=J

End If

If A(I,J) < Min Then

Min = A(I,J)

L3=I,L4=J

End If

Next : Next

Print "Maximum = "; Max; "At Location I="; L1;"and Location J=";L2

Print "Maximum = "; Min; "At Location I="; L3;"and Location J=";L4

End Sub

194

311 Chapter Seven: Matrices

7-4-2: Summation and production (Rows, Columns, All)

To find the sum we must first name the variables as shown: Sum1 as

sum of rows elements, Sum2 as sum of columns elements, and Sum3

as sum of all elements. Then follow these steps:

Step-1: set the initial value for these variables to zero in different

places as follow: Sum1=0 between (I) and (J) loops. Sum2=0

between (J) and (I) loops. Sum3=0 before (I) and (J) loops.

Step-2: put the cumulative sum equation (Sum=Sum + matrix

elements) for Sum1, Sum2, and Sum3.

Step-3: print the variables but in different places as follow: print

Sum1 between the next of (J) and (I) loops. print Sum1 between the

next of (I) and (J) loops. print Sum3 after the next of the two loops.

Note: We can follow these steps in multiplication operation but

change the names to Prod1, Prod2, and Prod3 and set them to (1).

Convert the plus sign in step-3 (+) to a prod sign (*).

195

311 Chapter Seven: Matrices

Example-4

You have the matrix W(4,4), write a VB program to find and print the

sum of rows, columns and the sum of all matrix elements.

Solution

For I = 1 To 4

Sum1 = 0

For J = 1 To 4

Sum1 = Sum1 + W(I, J)

Next J

Print "Sum of rows="; Sum1

Next I

For J = 1 To 4

Sum2 = 0

For I = 1 To 4

Sum2 = Sum2 + W(I, J)

Next I

Print "Sum of columns="; Sum2;

Next J

Sum3 = 0

For I = 1 To 4

For J = 1 To 4

Sum3 = Sum3 + W(I, J)

Next J : Next I

Print "Sum of array elements="; Sum3

End Sub

196

311 Chapter Seven: Matrices

7-4-3: Replacement between matrix elements

This operation is used if desired to replace a row (or column) with

another row (or column) or replacement between matrix halves or

quarters. To do this we must follow these steps:

Step-1: first, we must limit the replacing area by using loops. Open

loop (I) to limit the replacing rows and open loop (J) to limit the

replacing columns (Fix one of these loops if the replacing area was

one row or one column.

Step-2: before replacement we must find a relation between the

interchanged areas (usually addition with constant number) then use

the temporary storage variable (say T) as T = A(I,J): A(I,J) =

A(I+const, J+const): A(I+const, J+const) = T

Step-3: print the resultant array after replacing its elements.

Example-5

You have the matrix C(4,4), write a VB program to replace the upper

half elements with the lower half.

Solution

For I = 1 To 2

For J = 1 To 4

T = A(I, J): A(I, J) = A(I + 2, J): A(I + 2, J) = T

Next J : Next I

197

318 Chapter Seven: Matrices

Example-6

Write a VB program to input and print the matrix A(4, 4) then find

and print the following:

11. Maximum value and its position.

12. Sum of rows elements.

13. Sum of columns elements.

14. Sum of all elements.

15. Production of all elements.

Solution

Private Sub Form_Click()

Dim A(1 To 4,1 To 4) As Single, I%, J%

Dim Max!, Sum1!, Sum2!, Sum3!, L1%, L2%, Prod!

For I = 1 To 4

For J = 1 To 4

A(I, J) = Val(InputBox("Enter A(4,4) elements", I))

Print A(I, J);

Next J: Print : Next

Next I

Max = A(1, 1)

For I = 1 To 4

For J = 1 To 4

If A(I, J) > Max Then

Max = A(I, J)

198

311 Chapter Seven: Matrices

L1=I:L2=J

End If

Next J

Next I

Print "Maximum="; Max, "Location="; L1; L2

For I = 1 To 4

Sum1 = 0

For J = 1 To 4

Sum1 = Sum1 + A(I, J)

Next J

Print "Sum of rows="; Sum1(I)

Next I

For J = 1 To 4

Sum2 = 0

For I = 1 To 4

Sum2 = Sum2 + A(I, J)

Next I

Print "Sum of columns="; Sum2(J);

Next J

Sum3 = 0

For I = 1 To 4

For J = 1 To 4

Sum3 = Sum3 + A(I, J)

Next J

Next I

Print "Sum of array elements="; Sum3

End Sub

199

111
 Chapter Seven: Matrices

Prod = 1

For I = 1 To 4

For J = 1 To 4

Prod = Prod * A(I, J)

Next J

Next I

Print "Prod of array elements="; Prod

End Sub

Example-7

Write a VB program to generate a random elements for the matrix

A(8, 8) then do the following:

8. Replace the first quarter with the second.

9. Replace the left half with the right.

10. Replace the second row with the last.

11. Replace the third column with the fifth.

Solution:

Private Sub Form_Click()

Dim A(1 To 8, 1 To 8) As Integer, I%, J%

For I = 1 To 8

For J = 1 To 8

A(I, J) = 10*Rnd

200

113 Chapter Seven: Matrices

Next

Next

For I = 1 To 4

For J = 1 To 4

T = A(I, J): A(I, J) = A(I , J+4): A(I , J+4) = T

Next J

Next I

For I = 1 To 8

For J = 1 To 4

T = A(I, J): A(I, J) = A(I , J+4): A(I , J+4) = T

Next J

Next I

For J = 1 To 8

T = A(2, J): A(2, J) = A(8, J): A(8 , J) = T

Next J

For I = 1 To 8

T = A(I, 3): A(I, 3) = A(I, 5): A(I , 5) = T

Next J

201

111 Chapter Seven: Matrices

7.5 Problems

• Write a VB program to read two matrices (A and B) below then

find the matrix (C and D) from the following relations:

12. C=A+B

13. D=A-B

6 0
،

3 4

B A

 2 4 1
5

 Write a VB program to enter the matrix X(4, 5) then print the

matrix Y(5,4) which is the transpose of matrix X.

 Write a VB program to enter the matrix C(4, 3) then find and print

the maximum and minimum value for this matrix.

4. Write a VB program to enter matrix M(2, 2) then find and print the

determinant of this matrix.

5. Write a VB program to convert the matrix A(3, 2) to the array X(3).

Each element in the array (X) is the sum of the opposite columns

elements in matrix (A). Enter the elements of matrix (A) then print the

resulted array (X).

 Write a VB program to enter the matrix A(4, 4) then find and print

the following:

 Sum of the main diagonal elements.

 Sum of the second row elements.

 Multiplicand of the first column elements.

202

111 Chapter Seven: Matrices

 Sum of the upper triangle elements.
 Sum of the lower triangle elements

 Sum of all elements.

7. Four workers are works 5 days per week, the working hours are

listed in the table below. Write a VB program to store the information

in this table matrix X(4, 5) then find and print the following:

 Number of overall working hours.

 Number of working hours for each worker.

 The worker whose get maximum number of working hours.

 The day which accomplished a maximum number of working

hours.

Worker Sun Mon Tue Wed Thu

3 8.1 8 1.1 8.1 8

1 1 8 31 8.1 8

1 8.1 1 1 1 8

1 1.1 8 8 1.1 -

8. Write a VB program to enter the array E(4, 4) then find and print

the following:

 Maximum and minimum element in each row and their places

 Maximum and minimum element in each column and their places

 Maximum and minimum element in the array and their place

203

111 Chapter Seven: Matrices

9. Write a VB program to enter the matrix Q(8, 8) then do and print the

following:

• Convert it to the array R(64) then sort it in ascending manner.

• Replace the second quarter elements with the fourth quarter.

• Replace the first quarter elements with the third quarter.

• Replace the fourth column with the second row.

4) Write a VB program to enter the matrix Z(6, 6) then do and print the

following:

4) Add number (4) to the first row.

5) Subtract (2) from the third column.

6) Multiply the fourth row by (9).

7) Divide the sixth column over (8).

4) Design a VB project contains two command buttons named "enter

matrix elements" and "change". Asking you to enter the elements of

matrix A (6, 6) when you click the first command and when you click the

second command the 6th column will be changed by the triple value of the

1st column elements and the 3rd row will be replaced double value of the

4th row.

204

205
 Chapter Eight: Drawing in Visual Basic

CHAPTER EIGHT

DRAWING IN VISUAL BASIC

Introduction

Visual basic has an advanced methods for drawing shapes like

rectangles, circles, squares,… etc or drawing a points or functions

like sine, cosine, Ln,…etc. In this chapter we will learn how to draw

these geometric shapes in addition to learn how to draw free curves

and shapes. Before we learn how to draw we must know some

basics.

8-1: Drawing Basics

The first important thing is the Scale that we learn it in chapter-1 by

using the ScaleMode property that gives us eight standard units. We

can use our lonely scale by the use of Scale-statement. The format

of this statement is:

Scale (X1,Y1)-(X2,Y2)

Where X1, Y1 are the upper left point coordinates and X2, Y2 are

the lower right point coordinates. So this statement will divide the

205

206 Chapter Eight: Drawing in Visual Basic

form to number of squares its number equal to X2-X1 in X-Axis and

Y2-Y1 in the Y-Axis.

Unlike the mathematic axis visual basic axis are as shown in Figure

(8-1) the upper left corner is the original (0,0) point and the lower

right point is the end point and it is equal to (ScaledWidth,

SaledHeight).

(0,0)

X

(ScaleWidth , 0)
y

x (x , y)

(0 , ScaleHeight) (ScaleWidth , ScaleHeight)

Y

Figure(8-1): Visual Basic form coordinates

In visual basic we can also control the width of the drawing lines

using DrawWidth property as shown in the following format:

DrawWidth = Integer Number

206

207 Chapter Eight: Drawing in Visual Basic

8-2: Shapes Drawing

We can use visual basic to draw the standard shapes like lines,

squares, rectangles, circles, … etc. So we will learn how to draw

these shapes using visual basic programming language and visual

basic toolbox.

8-2-1: Using the shape box

The simplest way to draw prepared

shapes is to use the shape box

available in the toolbox shown in

Figure (8-2). Select this object then

place it on the form according to the

wanted size then vary the properties

(Shape and Fill style) to get the

shape and its filling type from Table-

1 and Table-2 respectively:

Index Shape

0 Rectangle

1 Square

2 Oval

3 Circle

4 Rounded Rectangle

5 Rounded Square

Table-1: shape property selection

domain

207

Shape Line

Figure(8-2): Shape and Line

control object

Index Fill Style

0 Solid

1 Transparent

2 Horizontal Line

3 Vertical Line

4 Upward Diagonal

5 Downward Diagonal

6 Cross

7 Diagonal Cross

Table-2: Fill Style property

selection domain

208
 Chapter Eight: Drawing in Visual Basic

Example-1:

Design a project contain shape box and command button named

"Draw shape". When we click this command the following shape

will appear with its property: A rounded square shape of width and

height=1000 twip with crossed lines filling with red colored.

Solution:

Private Sub cmdDraw_Click()

With Shape1

.Shape = 5

.Width = 1000

.Height = 1000

.FillStyle = 6

.FillColor = vbRed

End With

End Sub

8-2-2: Lines Drawing

Lines can be drawn using either the line box available in the toolbox

(back to Figure (8-2)) or using the code window. If the drawing lines

are not changed during the program execution you can use the line

box to draw these fixed lines. When the drawing lines are varied

during the execution we must use the following procedure:

Line (x1 , y1)-(x2 , y2)

208

209 Chapter Eight: Drawing in Visual Basic

Where x1, y1 are the start points and x2 , y2 are the end point for this line.

Example-2:

Write a VB program to draw two lines represents the X and Y axis on

the form. The two lines must divide the form into two equal parts

horizontally and vertically and also must meted in the center of this

form.

Solution:

Dim Xst As Single 'X start

Dim Yst As Single 'Y start

Dim FW As Single 'Form Width

Dim FH As Single 'Form Height

Private Sub Form_Click()

DrawWidth = 2

FH = Form1.ScaleHeight

FW = Form1.ScaleWidth

Xst = FW / 2

Yst = FH / 2

Line (0, Yst)-(FW, Yst)

Line (Xst, 0)-(Xst, FH)

End Sub

209

210 Chapter Eight: Drawing in Visual Basic

8-2-3: Circles, Ellipses, Sectors, and Arcs Drawing

As we learn previously, we can draw circles using the shape box by

changing the shape property index to 3 (according to table-1), but

these circles are fixed. In this section we will learn how to draw

circles and their derivatives (ellipses, Sectors, and Arcs) using the

code window. The following procedures will help use to draw these

shapes:

1. To draw a circle centered at x , y and radius R. C represent the

shape color as a vb constant:

Circle (x , y), R ,C

2. To draw an ellipse its x-axis radius is R1 and y-axis radius R2.

Circle (x , y) , R1 , C , , , R2

3. To draw a sector stared at point P1 and end at point P2. Note that

the negative sign (-) is not an operation but it is used to distinguish

between the sectors and arcs listed below.:

Circle (x , y) , R, C , – P1 , – P2

4. To draw an arc stared at point P1 and its end at point P2:

Circle (x , y) , R , C , P1 , P2

210

211 Chapter Eight: Drawing in Visual Basic

Example-3:

Write a VB program to draw a circle, ellipse, sector, and arc with

different colors and different places. Use a form scale of 10.

Solution:

Private Sub Form_Load()

Scale (0, 0)-(10, 10)

DrawWidth = 2 End Sub

Private Sub Form_Click()

' Draw a circle

Circle (2, 2), 1, vbHighlight

' Draw an ellipse

Circle (4, 4), 1, vbBlue , , , 2

' Draw a sector

Circle (6, 6), 1, vbmagneta , -3 * Atn(1), -5 * Atn(1)

' Draw an arc

Circle (8, 6), 1, vbRed , 3 * Atn(1), 5 * Atn(1)

End Sub

211

212 Chapter Eight: Drawing in Visual Basic

8-3: Texts Drawing

The classic method to display texts is to use the Print-statement but

this method is force us to print the texts starting at the beginning of

the form. If we want to display any text at any point in the form we

will use the two properties: Currentx and Currenty which are used

to define the xy starting point for printing the text.

Ex: Print the string "College Of Engineering" starting at

(1500,2500)Twip.

Ans:

CurrentX = 1500

CurrentY = 2500

Print "College of Engineering"

8-4: Points Drawing

The other important drawing method is the point drawing which can

help use to draw different shapes and plots by drawing a successive

and convergent points. The function PSet is used for this purpose

with the use of the following format:

PSet (x,y), Color

Where x and y is the x-y drawing location for this point, and color is

the color of it.

212

213 Chapter Eight: Drawing in Visual Basic

Example-4:

Write a VB program to draw ten points in main diagonal of the form and

other ten points in the secondary diagonal of the same form.

Solution:

Private Sub Form_Load()

Scale (0, 0)-(10, 10)

DrawWidth = 5 End Sub

Private Sub Form_Click()

For i = 0 To 10

PSet (i, i), vbRed

Next i

For i = 10 To 0 Step -1

PSet (10 - i, i), vbBlue

Next i

End Sub

8-5: Functions Drawing

It is a very important to draw the different mathematical functions like

sine, cosine, tan, Log, Ln, … etc. To plot any of these functions we must

first locate the X and Y axis then by repeating PSet function many times

we can plot a continues shape. Repeating PSet function can be down by

the use of loops.

213

214 Chapter Eight: Drawing in Visual Basic

Example-5:

Write a VB program to plot the trigonometric functions (Sin, Cos, Tan)

when you click the Form.

Solution:

Const pi As Single = 3.1415926

Dim AmpScale, I As Single

Dim f1, f2, f3 As Single

Private Sub Form_Click()

Scale (0, 0)-(10, 10)

DrawWidth = 2

Line (0, 5)-(10, 5)

Line (5, 0)-(5, 10)

AmpScale= 10 / 8

For I = - 180 / pi To 180 / pi Step 0.01

f1 = -Sin (I - 5) * AmpScale + 5

f2 = -Cos (I - 5) * AmpScale + 5

f3 = -Tan (I - 5) * AmpScale + 5

' The first 5 for the phase shift and the second for the Amplitude shift

PSet (I, f1), vbRed

PSet (I, f2), vbGreen

PSet (I, f3), vbBlue

Next I

End Sub

214

215 Chapter Eight: Drawing in Visual Basic

8-6: Free Drawing

This type of drawing is not limited by any rules. Pset function,

explained previously, is used for such case. Free drawing usually

used for plotting unlimited features like curves, hand plotting, zigzag

drawing, … etc. The very wide used application uses this kind of

drawing is the Paint program that is available in any windows copy

when we select the Accessories in the Start menu.

Example-6:

Write a VB program to design a simple paint program. The program

begins plotting when we click the mouse left button and start erasing

the plots when we click the mouse right button.

Solution:

Dim painting As Boolean

Private Sub Form_Load()

DrawWidth = 5

End Sub

Private Sub Form_MouseDown(Button As Integer, Shift As Integer, X As Single,

Y As Single)

painting = True

End Sub

215

216 Chapter Eight: Drawing in Visual Basic

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As

Single, Y As Single)

If painting And Button = 1 Then

PSet (X, Y), vbBlue

ElseIf painting And Button = 2 Then

PSet (X, Y), BackColor

End If

End Sub

Private Sub Form_MouseUp(Button As Integer, Shift As Integer, X As

Single, Y As Single)

painting = False

End Sub

216

217 Chapter Eight: Drawing in Visual Basic

8.7 Problems

5. Design a project contains two command buttons named "Line"

and "Circle" When we clicked the command "Line" a straight line

with starting point (240 , 480) and end point (1560 , 1680) will

appear. The command "Circle" will draw a circle with center (3480 ,

y=1080) and radius (800). the Used unit is Twip.

6. Write a VB program to draw two circles centered at the middle of

the form with radiuses: 500 twip and 2000 twip. The project also

contains two commands ("Max" and "Min") the first command used

to maximize the first circle to double its size and the second used to

minimize the second to 1/8 of its size.

7. Design a VB project to plot a rectangular shape with length 800

Twip and width 400 Twip. Each line in this shape will be plotted

according to click four command buttons.

8. Design a VB project contains a single command button with name

"Draw Three Shapes" and three shape boxes. When we click this

command a three different shapes with three different fill styles will

appear on this form.

9. Design a VB project to draw a triangle then find and print the area

and circumference for this triangle and view the results on two text

boxes.

217

218 Chapter Eight: Drawing in Visual Basic

4. Design a VB project to draw a square then find and print the area

and circumference for this square and view the results on two

message boxes.

5. Design a VB project contains single command, named "Draw

Sector and Arc" and two text boxes. When we click this command a

sector and arc with radius 2 unit will be drawn centered in the middle

of the form and their starting and ending points are entered from the

two text boxes. Use a scale of (10).

6. Write a VB program to draw four points with width (2) at a

rectangle corners. The length of this rectangle is (4) and width (3).

Use a scale of (12).

7. Write a VB program to draw ten points with width (3) in each

coordinates (X and Y) located at the middle of the form.

8. Write a VB program to view the following figure:

218

219 Chapter Eight: Drawing in Visual Basic

8. Write a VB program to view the following figure:

16. Write a VB program to draw the functions: sin
-1

(x), cos
-1

(x), and

tan
-1

(x) in the same figure and different colors. Use a scale of 10.

17. Write a VB program to draw the functions: sinh(x), cosh(x), and

tanh(x) in the same figure and different colors. Use a scale of 20.

18. Write a VB program to draw the functions: Ln(x), e
x
 in the same

figure and different colors. Use a scale of 15.

19. Write a VB program to draw the functions: x
2
, x

3
 in the same

figure and different colors. Use a scale of 10.

20. Write a VB program to write the English alphabets. Use the muse

left button to draw and the left button to erase. Use the yellow color.

219

220 Chapter Eight: Drawing in Visual Basic

11. Design a project contains combo box to enter the 4 items

represent width of pen drawing. Two option buttons ("Draw" and

"Erase") are also added to this project if we select the first option

the mouse left button will be a drawer button and if we select the

second option the same mouse button will be an eraser button.

220

I Appendix-A : Visual Basic Literal Constants

APPENDIX-A

Visual Basic Literal Constants

1. Align Constants: Constants for the Align property.

vbAlignBottom Control at bottom of form (Align).
vbAlignLeft Control at left of form (Align).
vbAlignNone Size and location set at design time or in code.
vbAlignRight Control at right of form (Align).
vbAlignTop Control at top of form (Align).

2. Alignment Constants: Constants for the Alignment property.

vbCenter Center (Alignment).
vbLeftJustify Left justify (Alignment).
vbRightJustify Right justify (Alignment).

3. Border-Style Constants for the Border Style property

Constants: of controls (not Forms).

vbBSDash Dash (shape and line BorderStyle).
vbBSDashDot Dash-dot (shape and line BorderStyle).
vbBSDashDotDot Dash-dot-dot (shape and line BorderStyle).
vbBSDot Dot (shape and line BorderStyle).
vbBSInsideSolid Inside solid (shape and line BorderStyle).
vbBSSolid Solid (shape and line BorderStyle).
vbTransparent Transparent (shape and line BorderStyle).

4. Button Constants :

vbButtonGraphical

vbButtonStandard

Button Constants (for CommandButton,

CheckBox, and OptionButton).

Graphical appearance (picture, text, and/or non-
standard Backcolor).
Standard Windows appearance.

I

II Appendix-A : Visual Basic Literal Constants

5. Check Box Constants : Checkbox Value property constants.

vbChecked Checked check value.
vbGrayed Grayed check value.
vbUnchecked Unchecked check value.

6. Color Constants :Color constants (see also System Color

Constants).

vbBlack Black Color
vbBlue Blue Color
vbCyan Cyan Color

vbGreen Green Color

vbMagenta Magenta Color
vbRed Red Color
vbWhite White Color
vbYellow Yellow Color

7. Combo Box Constants

vbComboDropdown

vbComboDropdownList

vbComboSimple

Combines the features of a TextBox

control and a ListBox control.

ComboBox control style that allows
typing in a text box or selection from a
drop-down list.
Only allows selection from the drop-
down list in a ComboBox control.
ComboBox control style that allows
typing in a text box or selection from a
list, which doesn't drop down.

8. Constants :

vbBack

vbCr

vbCrLf

vbFormFeed

vbLf

Predefined constants

Constant for backspace character; equivalent to
Chr$(8) Constant for carriage return (without linefeed);
equivalent to Chr$(13)
Constant for Carriage-return/Linefeed combination;
equivalent of Chr$(13)+Chr$(10)
Constant for form feed (ASCII 12); equivalent
to Chr$(12)
Constant for linefeed (without carriage return);

II

xi Appendix-A : Visual Basic Literal Constants

vbNewLine

vbNullChar

vbNullString

vbObjectError

vbTab

vbVerticalTab

equivalent to Chr$(10)

Constant for NewLine; platform specific
Basic constant for a single Null character
(ASCII value 0); equivalent to Chr$(0)
Constant for use when calling external procedures
requiring a string whose value is zero
Constant indicating error is being returned from
a Visual Basic object
Constant for Tab character (ASCII 9); equivalent
to Chr$(9)
Constant for vertical Tab (ASCII 11)
character; equivalent to Chr$(11)

9. Draw Style Constants : Constants for the Drag method.

vbDash Dash (Draw Style).
vbDashDot Dash-dot (Draw Style).
vbDashDotDot Dash-dot-dot (Draw Style).
vbDot Dot (Draw Style).
vbInsideSolid Inside solid (Draw Style).
vbInvisible Invisible (Draw Style).
vbSolid Solid (Draw Style).

10. Fill Style Constants :

vbCross

vbDiagonalCross

vbDownwardDiagonal
vbFSSolid

vbFSTransparent

vbHorizontalLine

vbUpwardDiagonal

vbVerticalLine

Locates and lists files in the

directory specified by the

Path property at run time.

Cross (FillStyle).
Diagonal cross (FillStyle).
Downward diagonal (FillStyle).
Solid (FillStyle).
Transparent (FillStyle).
Horizontal line

(FillStyle).
Upward diagonal
(FillStyle).
Vertical line

(FillStyle).

III

IV
 Appendix-A : Visual Basic Literal Constants

11. Form Arrange Constants :

vbArrangeIcons

vbCascade

vbTileHorizontal

vbTileVertical

Constants for the Arrange
method for MDI forms.
Arrange icons for minimized MDI
child forms.
Cascade all non-minimized MDI
child forms.
Horizontally tile all non-minimized
MDI child forms.
Vertically tile all non-minimized MDI
child forms.

12. Key Code Constants : Constants for the Key Board code.

vbKey0 0 key.

vbKey1 1 key.

vbKey2 2 key.

vbKey3 3 key.

vbKey4 4 key.

vbKey5 5 key.

vbKey6 6 key.

vbKey7 7 key.

vbKey8 8 key.

vbKey9 9 key.

vbKeyA A key.

vbKeyAdd Plus (+) key on the numeric keypad.

vbKeyB B key.

vbKeyBack Backspace key.

vbKeyC C key

vbKeyCancel Cancel key.

vbKeyCapital Caps key.

vbKeyClear Clear key.

vbKeyControl Ctrl key.

vbKeyD D key.

vbKeyDecimal Decimal (.) key on the numeric keypad.

vbKeyDelete Del key.

vbKeyDivide Divide (/) key on the numeric keypad.

vbKeyDown Down key.

vbKeyE E key.

vbKeyEnd End key.

vbKeyEscape Esc key.

vbKeyExecute Execute key.

IV

2. Appendix-A : Visual Basic Literal Constants

vbKeyF F key.

vbKeyF1 F1 key.

vbKeyF2 F2 key.

vbKeyF3 F3 key.

vbKeyF4 F4 key.

vbKeyF5 F5 key.

vbKeyF6 F6 key.

vbKeyF7 F7 key.

vbKeyF8 F8 key.

vbKeyF9 F9 key.

vbKeyF10 F10 key.

vbKeyF11 F11 key.

vbKeyF12 F12 key.

vbKeyF13 F13 key.

vbKeyF14 F14 key.

vbKeyF15 F15 key.

vbKeyF16 F16 key.

vbKeyG G key.

vbKeyH H key.

vbKeyHelp Help key.

vbKeyHome Home key.

vbKeyI I key.

vbKeyInsert Insert key.

vbKeyJ J key.

vbKeyK K key.

vbKeyL L key.

vbKeyLButton Left mouse button

vbKeyLeft Left key.

vbKeyM M key.

vbKeyMButton Middle mouse button.

vbKeyMenu Menu key.

vbKeyMultiply Multiply (*) key on the numeric keypad.

vbKeyN N key.

vbKeyNumlock Num Lock key.

vbKeyNumpad0 0 key on the numeric keypad.

vbKeyNumpad1 1key on the numeric keypad.

vbKeyNumpad2 2 key on the numeric keypad.

vbKeyNumpad3 3 key on the numeric keypad.

vbKeyNumpad4 4 key on the numeric keypad.

vbKeyNumpad5 5 key on the numeric keypad.

vbKeyNumpad6 6 key on the numeric keypad.

V

VI
 Appendix-A : Visual Basic Literal Constants

vbKeyNumpad7 7 key on the numeric keypad.
vbKeyNumpad8 8 key on the numeric keypad.
vbKeyNumpad9 9 key on the numeric keypad.
vbKeyO O key.
vbKeyP P key.
vbKeyPageDown PAGE DOWN key.
vbKeyPageUp PAGE UP key.
vbKeyPause Pause key.
vbKeyPrint PrintScreen key.
vbKeyQ Q key.
vbKeyR R key.
vbKeyRButton Right mouse button.
vbKeyReturn Return (Enter) key.
vbKeyRight Right key.
vbKeyS S key.
vbKeyScrollLock Scroll Lock key.
vbKeySelect Select key.
vbKeySeparator Enter key on the numeric keypad.
vbKeyShift Shift key.
vbKeySnapshot Snapshot key.
vbKeySpace Spacebar key.
vbKeySubtract Minus (-) key on the numeric keypad.
vbKeyT T key.
vbKeyTab Tab key.
vbKeyU U key.
vbKeyUp Up key.
vbKeyV V key.
vbKeyW W key.
vbKeyX X key.
vbKeyY Y key.
vbKeyZ Z key.

13. Menu Control Constants :

vbPopupMenuCenterAlign

vbPopupMenuLeftAlign

vbPopupMenuLeftButton

vbPopupMenuRightAlign

vbPopupMenuRightButton

Miscellaneous Menu control

constants.
Pop-up menu centered.
Pop-up menu aligned left.
Pop-up menu recognizes left
mouse button only.
Pop-up menu aligned right. Pop-
up menu recognizes right and left
mouse button.

VI

VII
 Appendix-A : Visual Basic Literal Constants

14. Mouse Button Constants :

Mouse button bit field constants.

vbLeftButton

vbMiddleButton

vbRightButton

Left mouse button.
Middle mouse button.
Right mouse button.

15. Mouse Pointer Constants : Mouse Pointer property constants.

vbArrow Arrow mouse pointer.

vbArrowHourglass Arrow and hourglass.

vbArrowQuestion Arrow and question mark.

vbCrosshair Cross mouse pointer.

vbCustom
Custom mouse pointer icon specified

by the Mouse Icon property.

vbDefault Default (MousePointer).

vbHourglass Hourglass mouse pointer.

vbIbeam I-Beam mouse pointer.

vbIconPointer Icon mouse pointer.

vbNoDrop No drop mouse pointer.

vbSizeAll Size all.

vbSizeNESW Size NE SW mouse pointer.

vbSizeNS Size N S mouse pointer.

vbSizeNWSE Size NW SE mouse pointer.

vbSizePointer Size mouse pointer.

vbSizeWE Size W E mouse pointer.

vbUpArrow Up arrow mouse pointer.

16. Scroll Bar Constants :

Scrollbar property constants.

vbBoth

vbHorizontal
vbSBNone

vbVertical

Both horizontal and vertical scroll bars.
Horizontal scroll bar.
No scroll bar.
Vertical scroll bar.

5. Shape Constants :Constants for the Shape property of the

Shape control.

vbShapeCircle Circle shape.

vbShapeOval Oval shape.

vbShapeRectangle Rectangle shape.

VII

VIII
 Appendix-A : Visual Basic Literal Constants

vbShapeRoundedRectangle Rounded rectangle shape.
vbShapeRoundedSquare Rounded square shape.
vbShapeSquare Square shape.

18. Shift Constants Shift parameter constants (bit fields for the

Shift parameter of various events).
vbAltMask Alt key bit mask.
vbCtrlMask Ctrl key bit mask.
vbShiftMask Shift key bit mask.

19. Calendar Constants for the Calendar

vbCalGreg Constant for specifying Gregorian Calendar

vbCalHijri Constant for specifying Hijri Calendar

20. Date and Time Constants

vbGeneralDate

vbLongDate

vbLongTime

vbShortDate

vbShortTime

vbFriday

vbMonday

vbSaturday

vbSunday
vbThursday

vbTuesday

vbUseSystemDayOfWeek

vbWednesday

vbFirstFourDays

vbFirstFullWeek

vbFirstJan1

vbUseSystem

VIII

J Appendix-A : Visual Basic Literal Constants

APPENDIX-A

Visual Basic Literal Constants

1. Align Constants: Constants for the Align property.

vbAlignBottom Control at bottom of form (Align).
vbAlignLeft Control at left of form (Align).
vbAlignNone Size and location set at design time or in code.
vbAlignRight Control at right of form (Align).
vbAlignTop Control at top of form (Align).

2. Alignment Constants: Constants for the Alignment property.

vbCenter Center (Alignment).
vbLeftJustify Left justify (Alignment).
vbRightJustify Right justify (Alignment).

3. Border-Style Constants for the Border Style property

Constants: of controls (not Forms).

vbBSDash Dash (shape and line BorderStyle).
vbBSDashDot Dash-dot (shape and line BorderStyle).
vbBSDashDotDot Dash-dot-dot (shape and line BorderStyle).
vbBSDot Dot (shape and line BorderStyle).
vbBSInsideSolid Inside solid (shape and line BorderStyle).
vbBSSolid Solid (shape and line BorderStyle).
vbTransparent Transparent (shape and line BorderStyle).

4. Button Constants :

vbButtonGraphical

vbButtonStandard

Button Constants (for CommandButton,

CheckBox, and OptionButton).

Graphical appearance (picture, text, and/or non-
standard Backcolor).
Standard Windows appearance.

I

JJ Appendix-A : Visual Basic Literal Constants

5. Check Box Constants : Checkbox Value property constants.

vbChecked Checked check value.
vbGrayed Grayed check value.
vbUnchecked Unchecked check value.

7. Color Constants :Color constants (see also System Color

Constants).

vbBlack Black Color
vbBlue Blue Color
vbCyan Cyan Color

vbGreen Green Color

vbMagenta Magenta Color
vbRed Red Color
vbWhite White Color
vbYellow Yellow Color

7. Combo Box Constants

vbComboDropdown

vbComboDropdownList

vbComboSimple

Combines the features of a TextBox

control and a ListBox control.

ComboBox control style that allows
typing in a text box or selection from a
drop-down list.
Only allows selection from the drop-
down list in a ComboBox control.
ComboBox control style that allows
typing in a text box or selection from a
list, which doesn't drop down.

8. Constants :

vbBack

vbCr

vbCrLf

vbFormFeed

vbLf

Predefined constants

Constant for backspace character; equivalent to
Chr$(8) Constant for carriage return (without linefeed);
equivalent to Chr$(13)
Constant for Carriage-return/Linefeed combination;
equivalent of Chr$(13)+Chr$(10)
Constant for form feed (ASCII 12); equivalent
to Chr$(12)
Constant for linefeed (without carriage return);

II

xii Appendix-A : Visual Basic Literal Constants

vbNewLine

vbNullChar

vbNullString

vbObjectError

vbTab

vbVerticalTab

equivalent to Chr$(10)

Constant for NewLine; platform specific
Basic constant for a single Null character
(ASCII value 0); equivalent to Chr$(0)
Constant for use when calling external procedures
requiring a string whose value is zero
Constant indicating error is being returned from
a Visual Basic object
Constant for Tab character (ASCII 9); equivalent
to Chr$(9)
Constant for vertical Tab (ASCII 11)
character; equivalent to Chr$(11)

9. Draw Style Constants : Constants for the Drag method.

vbDash Dash (Draw Style).
vbDashDot Dash-dot (Draw Style).
vbDashDotDot Dash-dot-dot (Draw Style).
vbDot Dot (Draw Style).
vbInsideSolid Inside solid (Draw Style).
vbInvisible Invisible (Draw Style).
vbSolid Solid (Draw Style).

10. Fill Style Constants :

vbCross

vbDiagonalCross

vbDownwardDiagonal
vbFSSolid

vbFSTransparent

vbHorizontalLine

vbUpwardDiagonal

vbVerticalLine

Locates and lists files in the

directory specified by the

Path property at run time.

Cross (FillStyle).
Diagonal cross (FillStyle).
Downward diagonal (FillStyle).
Solid (FillStyle).
Transparent (FillStyle).
Horizontal line

(FillStyle).
Upward diagonal
(FillStyle).
Vertical line

(FillStyle).

III

IV
 Appendix-A : Visual Basic Literal Constants

11. Form Arrange Constants :

vbArrangeIcons

vbCascade

vbTileHorizontal

vbTileVertical

Constants for the Arrange
method for MDI forms.
Arrange icons for minimized MDI
child forms.
Cascade all non-minimized MDI
child forms.
Horizontally tile all non-minimized
MDI child forms.
Vertically tile all non-minimized MDI
child forms.

12. Key Code Constants : Constants for the Key Board code.

vbKey0 0 key.

vbKey1 1 key.

vbKey2 2 key.

vbKey3 3 key.

vbKey4 4 key.

vbKey5 5 key.

vbKey6 6 key.

vbKey7 7 key.

vbKey8 8 key.

vbKey9 9 key.

vbKeyA A key.

vbKeyAdd Plus (+) key on the numeric keypad.

vbKeyB B key.

vbKeyBack Backspace key.

vbKeyC C key

vbKeyCancel Cancel key.

vbKeyCapital Caps key.

vbKeyClear Clear key.

vbKeyControl Ctrl key.

vbKeyD D key.

vbKeyDecimal Decimal (.) key on the numeric keypad.

vbKeyDelete Del key.

vbKeyDivide Divide (/) key on the numeric keypad.

vbKeyDown Down key.

vbKeyE E key.

vbKeyEnd End key.

vbKeyEscape Esc key.

vbKeyExecute Execute key.

IV

3. Appendix-A : Visual Basic Literal Constants

vbKeyF F key.

vbKeyF1 F1 key.

vbKeyF2 F2 key.

vbKeyF3 F3 key.

vbKeyF4 F4 key.

vbKeyF5 F5 key.

vbKeyF6 F6 key.

vbKeyF7 F7 key.

vbKeyF8 F8 key.

vbKeyF9 F9 key.

vbKeyF10 F10 key.

vbKeyF11 F11 key.

vbKeyF12 F12 key.

vbKeyF13 F13 key.

vbKeyF14 F14 key.

vbKeyF15 F15 key.

vbKeyF16 F16 key.

vbKeyG G key.

vbKeyH H key.

vbKeyHelp Help key.

vbKeyHome Home key.

vbKeyI I key.

vbKeyInsert Insert key.

vbKeyJ J key.

vbKeyK K key.

vbKeyL L key.

vbKeyLButton Left mouse button

vbKeyLeft Left key.

vbKeyM M key.

vbKeyMButton Middle mouse button.

vbKeyMenu Menu key.

vbKeyMultiply Multiply (*) key on the numeric keypad.

vbKeyN N key.

vbKeyNumlock Num Lock key.

vbKeyNumpad0 0 key on the numeric keypad.

vbKeyNumpad1 1key on the numeric keypad.

vbKeyNumpad2 2 key on the numeric keypad.

vbKeyNumpad3 3 key on the numeric keypad.

vbKeyNumpad4 4 key on the numeric keypad.

vbKeyNumpad5 5 key on the numeric keypad.

vbKeyNumpad6 6 key on the numeric keypad.

V

VI
 Appendix-A : Visual Basic Literal Constants

vbKeyNumpad7 7 key on the numeric keypad.
vbKeyNumpad8 8 key on the numeric keypad.
vbKeyNumpad9 9 key on the numeric keypad.
vbKeyO O key.
vbKeyP P key.
vbKeyPageDown PAGE DOWN key.
vbKeyPageUp PAGE UP key.
vbKeyPause Pause key.
vbKeyPrint PrintScreen key.
vbKeyQ Q key.
vbKeyR R key.
vbKeyRButton Right mouse button.
vbKeyReturn Return (Enter) key.
vbKeyRight Right key.
vbKeyS S key.
vbKeyScrollLock Scroll Lock key.
vbKeySelect Select key.
vbKeySeparator Enter key on the numeric keypad.
vbKeyShift Shift key.
vbKeySnapshot Snapshot key.
vbKeySpace Spacebar key.
vbKeySubtract Minus (-) key on the numeric keypad.
vbKeyT T key.
vbKeyTab Tab key.
vbKeyU U key.
vbKeyUp Up key.
vbKeyV V key.
vbKeyW W key.
vbKeyX X key.
vbKeyY Y key.
vbKeyZ Z key.

13. Menu Control Constants :

vbPopupMenuCenterAlign

vbPopupMenuLeftAlign

vbPopupMenuLeftButton

vbPopupMenuRightAlign

vbPopupMenuRightButton

Miscellaneous Menu control

constants.
Pop-up menu centered.
Pop-up menu aligned left.
Pop-up menu recognizes left
mouse button only.
Pop-up menu aligned right. Pop-
up menu recognizes right and left
mouse button.

VI

VII
 Appendix-A : Visual Basic Literal Constants

14. Mouse Button Constants :

Mouse button bit field constants.

vbLeftButton

vbMiddleButton

vbRightButton

Left mouse button.
Middle mouse button.
Right mouse button.

15. Mouse Pointer Constants : Mouse Pointer property constants.

vbArrow Arrow mouse pointer.

vbArrowHourglass Arrow and hourglass.

vbArrowQuestion Arrow and question mark.

vbCrosshair Cross mouse pointer.

vbCustom
Custom mouse pointer icon specified

by the Mouse Icon property.

vbDefault Default (MousePointer).

vbHourglass Hourglass mouse pointer.

vbIbeam I-Beam mouse pointer.

vbIconPointer Icon mouse pointer.

vbNoDrop No drop mouse pointer.

vbSizeAll Size all.

vbSizeNESW Size NE SW mouse pointer.

vbSizeNS Size N S mouse pointer.

vbSizeNWSE Size NW SE mouse pointer.

vbSizePointer Size mouse pointer.

vbSizeWE Size W E mouse pointer.

vbUpArrow Up arrow mouse pointer.

16. Scroll Bar Constants :

Scrollbar property constants.

vbBoth

vbHorizontal
vbSBNone

vbVertical

Both horizontal and vertical scroll bars.
Horizontal scroll bar.
No scroll bar.
Vertical scroll bar.

6. Shape Constants :Constants for the Shape property of the

Shape control.

vbShapeCircle Circle shape.

vbShapeOval Oval shape.

vbShapeRectangle Rectangle shape.

VII

VIII
 Appendix-A : Visual Basic Literal Constants

vbShapeRoundedRectangle Rounded rectangle shape.
vbShapeRoundedSquare Rounded square shape.
vbShapeSquare Square shape.

18. Shift Constants Shift parameter constants (bit fields for the

Shift parameter of various events).
vbAltMask Alt key bit mask.
vbCtrlMask Ctrl key bit mask.
vbShiftMask Shift key bit mask.

19. Calendar Constants for the Calendar

vbCalGreg Constant for specifying Gregorian Calendar
vbCalHijri Constant for specifying Hijri Calendar

20. Date and Time Constants

vbGeneralDate

vbLongDate

vbLongTime

vbShortDate

vbShortTime

vbFriday

vbMonday

vbSaturday

vbSunday
vbThursday

vbTuesday

vbUseSystemDayOfWeek

vbWednesday

vbFirstFourDays

vbFirstFullWeek

vbFirstJan1

vbUseSystem

VIII

XIII

Appendix-C : Reserved Words

APPENDIX-C

Reserved Words

A Clear DefDbl Exp

Abs Clipboard DefInt Explicit

Access CLng DefLng F

AddItem Close DefObj FALSE

AddNew Cls DefSng FieldSize

Alias Command DefStr FileAttr

Alphanumeric Command$ DefVar FileCopy

And CommitTrans Delete FileDateTime

Any CompactDatabase DeleteSetting FileLen

App Compare Dim Fix

AppActivate Const Dir For

Append Control Dir$ Form

AppendChunk Controls Do Format

Arrange Cos DoEvents Format$

As Count Double Forms

Asc CreateDynaset Drag FreeFile

Atn CSng Dynaset FreeLocks

B CStr E Function

ase CurDir$ Each G

Beep Currency Edit Get

BeginTrans CVar Else GetAttr

Between CVDate ElseIf GetChunk

Binary D End GetData

ByVal Data EndDoc DetFormat

C Date EndIf GetText

Call Date$ Environ$ Global

Case DateSerial EOF GoSub

CCur DateValue Eqv GoTo

CDbl Day Erase H

ChDir Debug Erl Hex

ChDrive Declare Err Hex$

Chr DefBool Error Hide

Chr$ DefByte Error$ Hour

CInt DefCur ExecuteSQL

Circle DefDate Exit

XIII

XIV Appendix-C : Reserved Words

 I Loop Or SaveSetting

 If LSet P Scale

 InputBox LTrim Point Second

 InputBox$ LTrim$ Preserve Seek

 InStr M Print Select

 Int Max Printer SendKeys

 Integer Me PrintForm Set

 Is Mid Private SetAttr

 IsDate Mid$ Property SetData

 IsEmpty Min PSet SetDataAccessOption

 IsNull Minute Public SetDefaultWorkspace

 IsNumeric MkDir Q SetFocus

 K Mod QBColor SetText

 Kill Month R Sgn

 L Move Random Shared

 LBound MoveFirst Randomize Shell

 LCase MoveLast Read Show

 LCase$ MoveNext ReDim Sin

 Left MovePrevious Refresh Single

 Left$ MoveRelative RegisterDataBase Space

 Len MsgBox Rem Space$

 Let N RemoveItem Spc

 Level Name RepairDatabase Sqr

 Lib New Reset Static

 Like NewPage Restore StDev

 Line Next Resume StDevP

 LinkExecute NextBlock Return Step

 LinkPoke Not RGB Stop

 LinkRequest Nothing Right Str

 LinkSend Now Right$ Str$

 Load Null RmDir StrComp

 LoadPicture O Rnd String

 Loc Oct Rollback String$

 Local Oct$ RSet Sub

 Lock On RTrim Sum

 LOF Open RTrim$ System

 Log OpenDataBase S T

 Long Option SavePicture Tab

XIV
XV

Appendix-C : Reserved Words

TableID Width

Tan Write

Text X

TextHeight Xor

TextWidth Y

Then Year

Time Z

Time$ ZOrder

Timer

TimeSerial

TimeValue

To

Trim

Trim$

TRUE

Type

TypeOf

U

UBound

UCase

UCase$

Unload

Unlock

Until

Update

Using

V

Val

Var

Variant

VarP

VarType

W

Weekday

Wend

While

XV

