

1
st
 class

Structured Programming

(C++) البرمجة المهيكلة

 استاذ المادة : م.م عباس جخير كاظم

 المعهد التقني / العمارة

LECTURE 1

1. Introduction:

hardware components

Computer is a device capable of performing computations and making

logical decisions at speeds millions and even billions of times faster than

human beings.

Computers process data under the control of sets of instructions called

computer programs.

Programming is the process of writing instructions for a computer in a certain

order to solve a problem.

The computer programs that run on a computer are referred to as software

(SW). While the hard component of it is called hardware (HW).

Developing new software requires written lists of instructions for a computer to

execute. Programmers rarely write in the langauage directly understood by a

computer.

2. Short History:

The following is a short history, just for given a general view of how languages

are arrived:

1954: Fortran.

1957: Cobol.

1958: Algol (Base for Simula).

1958: Lisp.

1961: B1000.

1962: Sketchpad.

1964: Basic.

1967: Simula67.

1968: FLEX.

1970: Pascal (From Algol).

1971: C (From a language called B).

1972: Smalltalk72 (Based on Simula67 and Lisp).

1976: Smalltalk76.

1979: ADA (From Pascal).

1980: C with classes (experimental version).

1983: C++ (by Bjarne Stroustrup).

1986: Objective-C (from C and Smalltalk).

1986: Eiffel (from Simula).

1991: Sather (From Eiffel).

1991: Java.

2000: C#.
Bjarne Stroustrup

at: AT&T Labs

3. C++ Programming Language:

For the last couple of decades, the C programming language has

been widely accepted for all applications, and is perhaps the most powerful

of structured programming languages. Now, C++ has the status of a

structured programming language with object oriented programming (OOP).

C++ has become quite popular due to the following reasons:

1. It supports all features of both structured programming and OOP.

2. C++ focuses on function and class templates for handling data

types.

4. C++ Program Development Process (PDP):

C++ programs typically go through six phases before they can be

executed. These phases are:

1. Edit: The programmer types a C++ source program, and makes

correction, if necessary. Then file is stored in disk with extension (.cpp).

2. Pre-Processor: Pre-processing is accomplished by the pre-proceccor

before compilation, which includes some substitution of files and other

directories to be include with the source file.

3. Compilation: Converting the source program into object-code.

4. Linking: A linker combines the original code with library functions to

produce an executable code.

5. Loading: The loader loads the program from the disk into memory.

6. CPU: Executes the program, residing in memory.

These steps are introduced in the figure below:

LECTURE 2

1. Algorithm:

As stated earlier an algorithm can be defined as a finite sequence of

effect statements to solve a problem. An effective statement is a clear,

unambiguous instruction that can be carried out .Thus an algorithm should

special the action to be executed and the order in which these actions are to

be executed.

Algorithm properties:

Finiteness: the algorithm must terminate a finite number of steps.

Non-ambiguity: each step must be precisely defined. At the

completion of each step, the nest step should be uniquely determined.

Effectiveness: the algorithm should solve the problem in a reasonable

amount of time.

Example 1: Develop an algorithm that inputs a series of number and output

their average .

A computer algorithm can only carry out simple instruction like:

"Read a number".

"Add a number to anther number".

"Output a number".

1. Carry out initialization required.

2. Read first number.

3. While the number of numbers is not complete do

4. begin

5. Add the number to the accumulated sum.

6. increment the count of numbers entered.

7. Read next number.

8. End

9. Evaluate the average.

Example 2: Devolve an algorithm that allows the user to enter the count of

numbers in a list followed by these numbers. The algorithm should find and

output the minimum and the maximum numbers in the list.

An algorithm for this might be:

Initialize.

Get count of numbers.

Enter numbers and find maximum and minimum .

Output result.

The user might enter zero for the count. To deal with this case the above

general case can be extended as follows to be an algorithm:

1. Initialize the require variables.

2. Get count of numbers.

3. If count is zero then exit.

4. Otherwise begin.

5. Enter numbers.

6. Find max and min.

7. Output result.

8. End.

2. Flowcharts

A flowchart is a graphical representation of an algorithm or of a portion

of an algorithm .Flowcharts are drawn using symbols. The main symbols used

to draw a flowchart are shown in following figure.

Start

Stop Start and Stop Symbols

Read Print
Input and Output Symbols

Mathematical and logical

 X=Y*Z

 processing symbol

Condition Decision making symbol

1A

2A Connector symbols

Example 1:
Draw a flowchart to read 3 numbers: x , y and z and print the

largest number of them.

Start

Read x

Max=x

Read y

Yes

No

y>max
?

Max=y

Read z

Yes

No

z>max

?

Maax=z

Print max

End

Example 2:

Draw the flowchart required to find the sum of negative

numbers among 50 numbers entered by the user.

Start

Counter=0
Sum=0

Read number

Counter=counter+1

Yes

NO Is
number<

0

Sum=sum + number

Is NO

counter

> 50

Yes

Print sum

End

WORK SHEET (1)

AN INTRODUCTION

Q1: What do you means by program?

Q2: Why C++ language becomes quite popular?

Q3: Talk briefly about C++ program development process ?

Q4: Write an algorithm and flowcharts for the following:

a. Sum the even numbers for n numbers.

b. Display numbersfrom 0 to 10.

c. The multiplication of 10 numbers.

Lecture 3

1 Character set:

C++ has the letters and digits, as show below:

Uppercase:

Lowercase:

Digits:

A,B,C,...,Z

a, b, c, . . ., z

0,1,2,...,9

Special Characters: All characters other than listed treated as

special characters for example:

+ - * / ^

([{ }]

) < = > , (Comma)

“ (Double Conations) . (Dot) : (Colon) ; (Semicolon) (Blank Space)

In C++ language, upper case and lower case letters are distinct and hence

there are 52 letters in all. For example bag is different from Bag which is

different from BAG.

2 Identifiers:

An identifier is a name given to some program entity, such as variable,

constant, array, function, structure, or class. An identifier is a sequence of

alphanumeric (alphabetic and numeric) characters, the first of which must be

a letter, and can’t contain spaces. The length of an identifier is machine

dependent. C++ allows identifiers of up to 127 characters.

A variable should not begin with a digit. C++ does not set a maximum

length for an identifier. Some examples of valid identifiers are as follows:

My_name

i

B

(7 char.)

(1 char.)

(1 char.)

Examples of invalid identifiers are:

3ab a()test ros sal

3 Keywords:

The keywords are also identifiers but cannot be user defined, since they

are reserved words. All the keywords should be in lower case letters. Reserved

words cannot be used as variable names or constant. The following words are

reserved for use as keywords:

Some of C++ Language Reserved Words:
break case char cin cout

delete double else enum false

float for goto if int

long main private public short

sizeof switch true union void

4 Constants:

There are three types of constants: string constants, numeric constants,

and character constants.

1. String Constants: A string constants are a sequence of alphanumeric

characters enclosed in double quotation marks whose maximum length is 255

characters. In the following are examples of valid string constants: (“The

result=”, “RS 2000.00”, “This is test program”). The invalid string constants are

like: (Race, “My name, ‘this’).

2. Numeric Constants: Numeric constants are positive or negative numbers.

There are four types of numeric constants: integer, floating point,

hexadecimal, and octal.

 Integer Integer

 Short integer (short)

 Long integer (long)

 Float Single precision (float)

 Double precision (double)

 Long double

 Hexa Short hexadecimal

 Long hexadecimal

 Unsigned char

Unsigned

Unsigned integer
 Unsigned short integer

 Unsigned long integer

 Octal Short octal

 Long octal

(a) Integer constants: Do not contain decimal points: int x,y; shortint x,y;

longint x,y;

 Integer data: size (16 or 32) fill in -215 to 215-1 for 16 bit and -231 to

231-1 for 32 bit.

 Short integer: fill in -215 to 215-1.

 Long integer: fill in -231 to 231-1.

 Unsigned: fill in (0 to 65635) for 16 bit and (0 to 4,294, 967, 295) for

32 bit.

(b) Floating point constants: Positive or negative numbers are represented

in exponential form. The floating point constant consists of an optionally

(signed) integer or fixed point number (the mantissa) followed by the

letter E and e and an optionally signed integer (the exponent). Ex.

(9010e10, 77.11E-11).

 Float 4 bytes.

 Double 8 bytes.

 Long double 12 or 16.

(c) Hexadecimal constants: Hexadecimal numbers are integer numbers of

base 16 and their digits are 0 to 9 and A to F.

(d) Octal constants: Octal numbers are numbers of base 8 and their digits

are 0 to 7.

3. Character Constants: A character represented within single quotes

denotes a character constant, for example ‘A’, ‘a’, ‘:’, ‘?’, etc…

Its maximum size is 8 bit long, signed, and unsigned char are three distinct

types.

Char x; char x,y,z;

The backslash (\) is used to denote non graphic characters and other

special characters for a specific operations such as:

Special Escape Code:

Escape Code Description

\n
New line. Position the screen cursor to the beginning of the next

line.

\t
Horizontal TAB (six spaces). Move the screen cursor to the next tab

stop.

\r
Carriage return. Position the cursor to the beginning of the current

line, do not advance to the next line.

\a Alert. Produces the sound of the system bell.

\b Back space

\\ Backslash. Prints a backslash character.

\f Form feed

\v Vertical tab

\” Double quote. Prints a (“) character.

\o Null character

\? question mark

\ooo Octal value

\xhhh Hexadecimal value

5. C++ operators:

C++

operators

Arithmetic operators

Assignment operators

Comparison and logical Relational,equality,logical

operators

Bit wise logical operators

Special operators Unary, ternary, comma

 Scope, new&delete, other

1. Arithmetic operators: These operators require two variables to be

evaluated:

+ addition - subtraction * multiplication

/ division % modula (remainder of an integer division)

The division result are:

Integer / integer = integer ► 39/7=5

Integer / float = float ► 39/7.0 =5.57

float / integer = float ► 39.0/7 =5.57

float / float = float ► 39.0/7.0=5.57

while 39%5=7, since 39=7*5+4

Arithmetic operators as per precedence:

() for grouping the variables.

- Unary for negative number.

* / multiplication & division. + -

addition and subtraction.

Example: X+y*X-Z, where X=5, Y=6, and Z=8.

5 + (6*5)-8 → (5+30)-8 → 35-8 → 27

2. Assignment Operators: The operatonal assignment operator has the

form:

Variable = variable operator expression;

Ex: x=x+5; y=y*10;

The operational assignment operator can be written in the following

form:

Variable operator = expression

Ex: x+=5; y*=10;

It is used to assign back to a variable, a modified value of the present

holding:

= Assign right hand side (RHS) value to the left hand side (LHS).

+= Value of LHS var. will be added to the value of RHS and assign it

 back to the var. in LHS.

-= Value of RHS var. will be subtracted to the value of LHS and

 assign it back to the var. in LHS.

*= Value of LHS var. will be multiplied to the value of RHS and

 assign it back to the var. in LHS.

/= Value of LHS var. will be divided to the value of RHS and assign

 it back to the var. in LHS.

%= The remainder will be stored back to the LHS after integer

 division is carried out between the LHS var. and the RHS var.

>>= Right shift and assign to the LHS.

<<= Left shift and assign to the LHS.

&= Bitwise AND operation and assign to LHS

|= Bitwise OR operation and assign to LHS

~= Bitwise complement operation and assign to LHS

This is a valid statements:

A=b=c+4;

C=3*(d=12.0/x);

Exercise:

Rewrite the equivalent statements for the following examples, and find it

results. Assume: X=2 , Y=3 , Z=4 , V=12 , C=8.

Example Equivalent Statement Result

X+= 5 X=X+5 X 7

Y-= 8 Y=Y-8 Y-5

Z*= 5 Z=Z*5 Z

V/= 4 V

C%= 3 C

3. Comparision and logical operators: It has three types relational

operators, equality operators, and logical operators.

(a) Relational operators: < less than, > greater than, <= less than or equal,

>= greater than or equal, an expression that use relational operators

return the value of one if the relational is TRUE ZERO otherwise.

Ex: 3 > 4 → false, 6 <=2 →false, 10>-32 → true, (23*7)>=(-67+89) → true

(b) Equality operators: == equal to , != not equal to

Ex: a=4, b=6, c=8. A==b→false, (a*b)!=c→true,‘s’==’y’ →false.

(c) Logical operators: The logical expression is constructed from relational

expressions by the use of the logical operators not(!), and(&&), or(||).

AND (&&) Table:

A B A&&B

T T T

T F F

F T F

F F F

AND (&&) Table:

A B A&&B

1 1 1

1 0 0

0 1 0

0 0 0

OR (||) Table:

A B A||B

T T T

T F T

F T T

F F F

NOT (!) Table:

A !A

T F

F T

OR (||) Table:

A B A||B

1 1 1

1 0 1

0 1 1

0 0 0

NOT (!) Table:

A !A

1 0

0 1

Examples:

Example 1:

a=4, b=5, c=6

(a<b)&&(b<c) (a<b)||(b>c) !(a<b)||(c>b) (a<b)||(b>c)&&(a>b)||(a>c)

T &&T T || T !(T) || T T || F && F||F

T T F || T T || F || F

 T T || F

 T

Example 2:

Assume: X=0, Y=1, Z=1. Find the following expression:

M = ++X || ++Y && ++Z

M = ++X || ++Y && ++Z
=1||(2&&2)

= T||(T&&T)
= T||T
= T
= 1

(d) Bitwise logical operator:

& bitwise AND, ^ bitwise exclusive OR(XOR), | bitwise inclusive OR,

>> bitwise left shift, << bitwise right shift, ~ bitwise complement.

Ex: x=23 (0001 0111) ~x=132 (1110 1000)

X=33 (0010 0001)

X<<3

0 01000010

0 10000100

1 00001000 the resultant bit pattern will be (0000 1000)

X=5, y=2 → x&y (0000) , x|y (0111) , x^y (0111)

(e) special operators:

1. Unary operator:

* Contents of the storage field to which a pointer is pointing.

& Address of a variable.

- Negative value (minus sign).

! Negative (0, if value ≠ 0, 1 if value =0).

~ Bitwise complement.

++ Increment.

-- Decrement.

Type Forced type of conversion

Size of Size of the subsequent data type or type in byte.

2. Ternary operator: It is called conditional operator, it is like if else

construction:

Expression 1 ? expression 2 : expression 3 If

(v%2 == 0)

e = true
E=(v%2 ==0)? True : false

Else

e=false

3. Comma operator: (,)

Int a,b,c; or it is used in control statements

4. Scope operator: (::) It is used in a class member function definition.

5. New and delete operators: it is a method for carrying out memory

allocations and deallocations.

6. Other operators: parentheses for grouping expressions, membership

operators.

6. Type Conversion:

Some variables are declared as integers but sometimes it may be

required to bet the result as floating point numbers. It is carried out in two

ways:

(A) Converting by assignment: (B) Cast operator:

int x; float y; x=y; Result =(int) (19.2/4); or

 Result = int (19.2/4);

Lecture 4

1 Statements:

A statement in a computer carries out some action. There are three

types of statements used in C++; they are expression statement, compound

statement and control statement.

Expression statement Compound statement Control statement
x=y; { If (a>b) {

sum=x+y; a=b+c; a=I;
 x=x*x; k=a+1;

 y=a+x; }

 }

2 Getting Started with C++:

The skeleton of a typical C++ program structure is given below:

Program heading

Begin

Type or variable declaration

Statements of operation

Results

end

The keyboard and screen I/O instructions in C++ are:

(a): COUT/ display an object onto the video screen:

Cout<<var.1<<var2<<…<<var.n;

(b): Cin/ It is used to read an object from a standard input device (keyboard):

Cin>>var.1>>var.2>>…>>var.n;

To begin learning C++ lets examine our first C++ Program:

Example 1

#include<iostream.h>

void main()
{

// A program to print

welcome cout << “Welcome”;

}

#include<iostream.h> this line is for pre-processor directive. Any begins with # is

processed before the program is compiled. C++ programs must be start with #include.

Every group of related functions is stored in a separate library called (header file).To use

the cin and cout, must include the header file iostream.

main(), is the name of C++ function. Every C++ program must have a function called

main.

void, is the return type of the main function. When the return type of a function is void,

this function will not passes back any value to the calling function.

Some programmers use int as a return type for the main function, in this case a

return(0) statement must be written as a last statement of the main function-body.

{, introducing the statements that define the function.

}, indicates the end of the statements in the function.

//, text after these symbols is a comment. It does not affect the program code, and

compilers normally ignore it.

cout, the input stream object. It passes the characters quotes (“) to the terminal screen.

cin, the input stream object. It reads the input values from the keyboard.

<<, the stream insertion operator (or send operator).

>>, the stream extraction operator (or get from operator).

; , semicolon, the terminator of every C++ statement.

The endl is used in c++ to represent a new line, as shown in the following

example:

Example 2

#include<iostream.h>
void main()
{

cout << “hallow” << endl;

cout << “students”;

}

The \n is a special escape code, also used in C++ to represent a new line, as

shown in the following example:

Example 3

#include<iostream.h>

void main()

{

cout << “hallow \n”;

cout << “students”;
}

3 Variables Declaration:

A declaration is a process of naming the variables and their statements

datatypes in C++. C++ allows declaration of the variables before and after

executable statements. A variable ia an object that may be take on values of

the specified type.

Also ,a variable is a location in the computer’s memory where a value

can be stored for later use by the program. Variables are like buckets that

hold data. These data buckets are really locations in the computer’s memory.

The variable must be declared by specifying the datatype and the

identifier. datatype id.1, id2, …,idn;

A variable defined by stating its type, followed by one or more spaces,

followed by the one or more variable names separated by commas, then

followed by semicolon. For example:

unsigned short Int X;

float Y;

char A, a, c;

Note: C++ does distinguish between above A and a variables

(C++ is case-sensitive).

Example 4

 The following program reads three different inputs and outputs it.

#include<iostream.h>

void main()

{ Output:

int num=3;
Number=3

cout << “number=”<<num<<”\n”;

Character=a char ch=’a’;

cout << “character=”<<ch<<”\n”; Real number=34.45

float fa=-34.45;

cout<<”real number=”<<fa<<”\n”;

}

Example 5

 The following program reads three different inputs and outputs it.

#include<iostream.h>

void main()

{

int n; float f; char c;

cout << “input integer number:”;

cin>>n;

cout<<endl;

cout << “input decimal number:”;

cin>>f;
cout<<endl;

cout << “input character:”;

cin>>c;

}

4 Constants:

Like variables, constants are data storage locations. Unlike variables, and as

the name implies, constants don’t change.

const int myage=23;

const double pi=3.14;

const float salary=20.5;

Example 6

 Write a program that reads the radius of a circle, then computes and
outputs its area.

#include<iostream.h>

void main()

{

const float pi = 3.14;

int r; float c;

cout << “enter the radius of circle:”;
cin>>r;

cout<<endl;

c = r * r * pi;

cout << “the area of circle:” << c;

}

Example 7

 The following program computes the arethmatic operators.

#include<iostream.h>

void main()

{ Output:

int a,b,sum,sub,mul,div; Enter any two numbers

cout << “enter any two numbers<<endl; 10 20

cin>> a>>b; A=10 b=20 sum=30

sum=a+b;
 Sub=-10
 Mul=200

sub=a-b;

 Div=0
mul=a*b;

div=a/b;

cout<<”a=”<<a<<”b=”<<b<<”sum=”<<sum<<endl;

cout<<”sub=”<<sub<<endl;

cout<<”mul=”<<mul<<endl;

cout<<”div=”<<div<<endl;

}

Example 8

 The following program computes different division operators.
#include<iostream.h>
void main()

{

int x, y, z, r ;

x= 7 / 2;
cout << "x=" << x <<endl;

y=17/(-3);

cout << "y="<< y <<endl;

z=-17/3;

cout << "z="<< z <<endl;
r=-17/(-3);

cout << "r="<< r <<endl;

}

The modulus operator “%” is used with integer operands (int, short, long,

unsigned). It can’t be used with float or double operands.

Example 9

#include<iostream.h>

void main()

{

int y1, y2;

y1 = 8 % 3;

y2 = -17 % 3;

cout << "y1="<< y1 <<endl;

cout << "y2="<< y2 <<endl;
}

Lecture 5

1 Examples of order evaluation:

Example 1:

Write the following equation as a C++ expression:

Solution:

f = (a + b + c + d + e) / 10;

Note: the parentheses here are required because division has

higher precedence than addition.

Example 2:

State the order of evaluation for the following expression:
Z=P*R%Q+W/X–Y;

Solution:

1. *
2. %
3. /
4. +
5. -

Example 1

 Write C++ program to perform the above equation:

#include<iostream.h>

void main()

{

int Z, P, R, Q, W, X, Y;

cout << "enter P:"; cin >> P;

cout << "enter R:"; cin >> R;

cout << "enter Q:"; cin >> Q;
cout << "enter W:"; cin >> W;

cout << "enter X:"; cin >> X;

cout << "enter Y:"; cin >> Y;

Z=P*R%Q+W/X-Y;

cout << "the result="<< Z;

2 The “math.h” Library:

The “math.h” library contains the common mathematical function used in the

scientific equations.

Common function from math.h library:

Mathematical Expression C++ Expression

eⁿ Exp(x)

Log(x) Log10(x)

Ln(x) Log(x)

Sin(x) Sin(x)

xⁿ Pow(x,n)

√x Sqrt(x)

Example:

Write the following equation as a C++ expression and state the order of

evaluation of the binary operators:

Solution:

f = sqrt ((sin(x) – pow(x,5)) / (log(x) + x/4))

Order of evaluation:

Exercise:

Write the following equation as a C++ expression and state the order of

evaluation of the binary operators:

Solution: ?

The ++ and - - operators can be written either before the variable (prefix

notation) or after the variable (postfix notation) as in the following:

Prefix notation: ++ X X is incremented before its value is

taken or returned to current statement.

Postfix notation: X ++ X is incremented after its value is taken

or returned to current statement.

The difference between the Prefix and Postfix notations:

Prefix notation Postfix notation

 int y; int y;
 int x = 7; int x = 7;

 cout<< ++x <<endl; cout<< x++ <<endl;
 y=x; y=x;

 cout<<y; cout<<y;

 Output: Output:

 8 7

8 8

3 Manipulator Functions:

They are special stream functions that change certain characteristics of the

input and output.

(a) Endl: Generate a carriage return or line feed character.
Cout << “a” << endl;

(b) Setbase: It is used to convert the base of one numeric value into a

nother base
Dec(base 10), hex(base 16), oct(base 8)

Example 2

Write C++ program to convert a base of a number:

#include<iostream.h> Enter number

void main() 10

{ Decimal base=10

int value; Hexadecimal base=a

cout << "enter number:"; cin >> value; Octal base=12

cout << "Decimal base=”<<dec<<value<<endl;

cout << "Hexadecimal base=”<<hex<<value<<endl;

cout << "Octa base=”<<oct<<value<<endl;

}

When using setbase the statement will be:

Cout<<”Decimal base=”<<setbase(10);

Cout<<value<<endl;

(c) Setw: It is used to specify the minimum number of character positions on

the O/P field a variable will consume: setw(int w)

Example 3

 Write C++ program to use tab:

#include<iostream.h>
#include<iomanip.h>

200 300

void main(void)
{

int a,b;

a=200;

b=300;

cout<<a<<’\t’<<b<<endl;

}

Example 4

 Write C++ program to use setw:

#include<iostream.h>
#include<iomanip.h>

200 300

void main(void) 200 300
{

int a,b;

a=200;

b=300;
cout<<setw(5)<<a<<setw(5)<<b<<endl;

cout<<setw(6)<<a<<setw(6)<<b<<endl;

}

(d) Setfill: It is used to specify a different character to fill the unused field

width of the value. Setfill(char f)

Example 5

Write C++ program to use setfill:

#include<iostream.h>

#include<iomanip.h> **200**300

void main(void) ***200***300

{

int a,b;
a=200;

b=300;

setfill(‘*’);
cout<<setw(5)<<a<<setw(5)<<b<<endl;

cout<<setw(6)<<a<<setw(6)<<b<<endl;

}

(e) Setfill: It is used to control the number of digits of an output stream

display of a floating point value. Setprecision (int p)

Example 6

 Write C++ program to use setprecision:

#include<iostream.h>

#include<iomanip.h> 1.7

void main(void) 1.66667
{

float a,b,c;

a=5; b=3; c=a/b;

setfill(‘*’);

cout<<setprecision(1)<<c<< endl;
cout<<setprecision(5)<<c<< endl;

}

WORK SHEET (2)

First Elements of C++

Q1: What do you means by C++ character set?

Q2: What do you means by identifiers? What is the maximum length of

identifiers?

Q3: What do you means by case-sensitive?

Q4: What do you means by reserved word?

Q5: Write a general layout of C++ program. Comment on each part of

it.

Q6: What is the main purpose of endl and \n ?

Q7: List and comments on the special escape codes.

Q8: What are the main types of variables, its sizes, and its range of

values?

Q9: What do you means by constants?

Q10: List the priorities of the arithmetic operations.

Q11: Find the value of A for the following:

A=(5+2*3+((3–2)*7)+ -9)/2.

Q12: What are the main keywords are includes in iostream.h and

math.h?

Q13: What are the main difference between prefix and postfix notation?

Q14: Find the value of B (true or false) for the following:

i= 5;

j = 9;

B= ! ((i > 0) && (i >= j));

Q15: Write C++ program to read x and compute sin, cos, and tan of x.

Q16: Rewrite the equivalent statements for the following examples,

and find it results. Assume: X=2 , Y=3 , Z=4 , V=12 , C=8.

(X+=5 , Y-=8, Z*=5 , V/=4 , C %=3)

Q17: Given that A and B are real variables with values 1.5, and 2.5

respectively, and C is integer variable with value 3, evaluate the

following: NOT (A < 0) AND (B/C <= 0).

Q18: Write a program in C++ to find the area of a circle.

Q19: Write a program to read a set of (5) real no.s and find out the

sum and average of them.

LECTURE 6

1. Selection Statements:

Conditional expressions are mainly used for decision making. C++ provides

multiple selection structures: if, if/else, else if, nested if and switch.

2. The Single If Statement Structure:

The IF statement is used to express conditional expression. If the given

condition is true then it will execute the statements; otherwise it will execute

the optional statements.

General Form of single-selection If statement:

if (expression or condition) statement1 ;

condition
 statement1

Example 1: if (avrg >= 3.5)

 cout << “good”;

Example 2: if (x > 0.0)

 sum += x;

Example 3: cin >> num;

 if (num == 0)

 zcount = zcount + 1;

Example 1

 Write a C++ program to read any two numbers and
print the largest value of it:

#include<iostream.h>

void main()

{

Float x,y;

Cout<<”Enter any two numbers\n”;

Cin>>x>>y;
If (x>y)

Cout << “largest value is”<<x<<endl;

}

3. The Single Block If Statement Structure :

The block IF statement are enclosed in ({) and (}) to group declaration and

statements into a compound statement or a block. These blocks are always

considered as a single statement. The structure is:

General Form of single block selection If statement:

if (expression or condition)

{
statement1 ;

statement2 ;

statement3 ;

}

Example 2

 Write a C++ program to read a number and check if it’s positive,
if it’s so print it, add it to a total, and decrement it by 2:

#include<iostream.h>

void main()

{
int num, total=0;

cin >> num;

if (num >= 0)

{cout << num <<” is a positive”;

total += num; num = num – 2;
} }

General Form of If/else statement:

 if (expression) if (expression)

 statement1 ; {statements }

 else statement2 ; else {statements}

4. The If/else Statement Structure:

The IF structure is

true
condition

false

Statement1 Statement2

In this case, either of the two statements are executed depending upon the

value of the expression. Note that there is a semicolon after each of the

statement but not after the IF expression. Note that the else statement without

braces leads to confusion so:

 If (i>j) { If (a>b)
 temp=a;

 }
 Else

 temp=b;

Example 1: cin >> value;

 if (value >= 0)
 cout << “positive”;

 else

 cout << “negative”;

Example 2: cin >> num1 >> num2;

if (num1 > num2)

cout << num1;

else

cout << num2;

Example 3

 Write a C++ program to read a student degree, and check if it’s
degree greater than or equal to 50, then print pass, otherwise print fail:

#include<iostream.h>

void main()

{
int degree;

cin >> degree;

if (degree >= 50)

cout << ”pass”;

else
cout << “fail”;

}

Example 4

 Write a C++ program to read a number, and check if it’s even or
odd:

#include<iostream.h>

void main()

{

int num;
cin >> num;

if (num % 2 == 0)

cout << ”even”;

else

cout << “odd”;
}

5. Else if Statements:

General Form of else if statement:

if (expression or condition 1)

expression or condition 2) statement2 ;

expression or condition 3) statement3 ;

:

else if (expression or condition n) statement-n ;
else statement-e ;

Example 1:

if (value == 0) cout << “grade is A”; else if

(value == 1) cout << “grade is B”; else if (

value == 2) cout << “grade is C”; else

cout << “grade is X”;

Example 5

 Write a C++ program to read a number, and print the day of the
week:
#include<iostream.h>
void main()

{

int day;

cin >> day;

if (day == 1) cout << “Sunday”;
else if (day == 2) cout << “Monday”;

else if (day == 3) cout << “Tuesday”;

else if (day == 4) cout << “Wednesday”;

else if (day == 5) cout << “Thursday”;

else if (day == 6) cout << “Friday”;

else if (day == 7) cout << “Saturday”;
else cout << “Invalid day number”;

}

else if (
else if (

statement1 ;

Example 6

 Write C++ program to compute the value of Z according to the
following equations:

Z ={

x + 5

cos(x) + 4

√ x

: x < 0

: x = 0
: x > 0

#include<iostream.h>

void main()

{

int Z, x;

cout << "Enter X value \n";
cin >> x;

if (x < 0) Z= x + 5;

else if (x == 0) Z= cos(x) + 4;

else Z= sqrt(x);

cout << "Z is " << Z;
}

6. Nested If Statements:

Some of the samples of NESTED if-else constructions are shown below:

If (exp.) { Statements } If (exp.) { If (exp.) {

Else { Statements} If (exp.) {Statements} If (exp.) {Statements}

 Else { Statements} } Else { Statements} }
 Else {Statements} Else {If (exp)
 {Statements}

 Else {Statement}

 }

Example 7

 Write C++ program to find a largest value among three numbers:

#include<iostream.h>

void main()

{

#include<iostream.h>

void main()

{
Float x,y,z;

Cout<<”Enter any two numbers\n”;

Cin>>x>>y,z;

If (x>y) {

If (x>z)

Cout << “largest value is”<<x<<endl;
Else

Cout << “largest value is”<<z<<endl;

}

Else If (y>z)

Cout << “largest value is”<<y<<endl;
Else

Cout << “largest value is”<<z<<endl;

}

LECTURE 7

1. The Switch Selection Statement (Selector):

The switch statement is a special multi way decision maker that tests

whether an expression matches one of the number of constant values,

and braces accordingly.

General Form of Switch Selection statement:

switch (selector)

{

case label1 : statement1 ; break;

case label2 : statement2 ; break;

case label3 : statement3 ; break;

:
case label-n : statement-n ; break;

default : statement-e ; break;

}

Example 1: switch (value)

 {

 case 0: cout << “grade is A”;

 break;
 case 1: coucout << “grade is B”;

 break;

 case 2: coucout << “grade is C”;

 break;
 default: cout << “grade is X”;

}

break;

Example 1

 Write C++ program to read integer number, and print the name of
the day in a week:

#include<iostream.h>

void main()

{

int day;

cout << “Enter the number of the day \n”;

cin >> day;
switch (day)

{
case 1: cout << “Sunday”; break;

case 2: cout << “Monday”; break;

case 3: cout << “Tuesday”; break;

case 4: cout << “Wednesday”; break;

case 5: cout << “Thursday”; break;

case 6: cout << “Friday”; break;

case 7: cout << “Saturday”; break;

default: cout << “Invalid day number”; break;

}
}

Example 2

 Write C++ program to read two integer numbers, and read the
operation to perform on these numbers:

#include<iostream.h>

void main()

{

int a, b;

char x;

cout << “Enter two numbers \n”;

cin >> a >> b;

cout << “+ for addition \n”;

cout << “- for subtraction \n”;

cout << “* for multiplication \n”;

cout << “/ for division \n”;

cout << “enter your choice \n”;
cin >> x;

switch (x)

{

case ‘+’: cout << a + b;

break;

case ‘-’: cout << a - b;

break;

case ‘*’: cout << a * b;

break;
case ‘/’: cout << a / b;

break;

default: break;

}

}

2. Nested Switch Selection Statement:

General Form of Nested Switch Selection statement:

switch (selector1)

{

case label1 : statement1 ; break;

case label2 : statement2 ; break;

case label3 : switch (selector2)

{
case label1 : statement1 ; break;

case label2 : statement2 ; break;

:
}

case label-n : statement-n ; break;

default : statement-e ; break;

}

Example 3

 Write C++ program to read integer number, and print the name of
the computerized department:

#include<iostream.h>

void main()

{

int i,j;
cout << “Enter the number for the department name \n”;

cin >> i>>j;

switch (i)

{

case 1: cout << “Software Engineering Department”; break;

case 2: cout << “Control and computers Department”; break;

case 3: cout << “Computer Sciences Department”;
 cout<<”Enter the no. of branch”;

{
switch(j)

case 1: cout << “Software”; break;

case 2: cout << “Information system”; break;

case 3: cout << “Security”;

case 4: cout << “AI”;

}

default: cout << “Invalid day number”; break;

}

}

3. Conditional Statement:

General Form of Conditional statement:

(condition ? True : False)

Example 1: cin >> value;

 cout << (value >= 0 ? “positive” : “negative”);

Example 2: cin >> x >> y;

 cout << (x < y ? -1 : (x == y ? 0 : 1));

Example 4

 Write C++ program to read integer number, and print if its even or
odd:

#include<iostream.h>

void main()

{

int value;
cout << “Enter the number \n”;

cin >> value;

cout<<(value%2==0?”even”:”odd”);

}

WORK SHEET (3)

Selection Statements

Q1: Write C++ program to read two integer numbers then print “multiple”

or “not” if one number is a multiple to another number.

Q2: Write C++ program to read integer number and print the equivalent

string.
e.g:

0 Zero

1 One

2 Two
:

Q3: Write C++ program to read a score of student and print the estimation

to refer it.
e.g:

100 - 90 Exultant
89 - 80 Very good

79 - 70 Good

69 - 60 Middle

59 - 50 Accept

49 - 0 Fail

Q4: Write C++ program to represent a simple nested case (selector).

Q5: Write C++ program to compute the area of circle if the radius r=2.5.
Note: area of circle is r * r * pi ,

pi is 3.14

Q6: Write C++ program to read an integer number and check if it is positive or

negative, even or odd, and write a suitable messages in each case.

Q7: Write a program to read 3 numbers, and write the largest and smallest

numbers.

Q8: Write C++ program to read an integer from 1 to 12, and print out the

value of the corresponding month of the year.

Q9: Write C++ program to reads a character and print if it is digit (0..9),

capital letter (A,B, … ,Z), small letter (a, b, … ,z), special character (+, !,

@,#, ,{,>,…).

Q10: Write C++ program to read x and compute the following:

Q11: Write C++ program to read 5 numbers and determine if the numbers

sorted ascending or not.

Q12: Write C++ program to read two integer numbers, and read the

operation to perform on these numbers.

Q13: Write a program to read X and print Sin X if X>0, square root X f X<0 and

absolute X if X/2 is integer.

LECTURE 8

1. Loop Statements:

The loop statements are essential to construct systematic block styled

programming. C++ provides three iteration structures: while, do/while, and for.

2. While Repetition Structure:

General Form of While statement:

while (condition)

statement1 ;

while (condition)

{
statement1 ;

statement2 ;

:

statement-n ;

}

condition

T
Statement s

F

The condition represents the value of a variable, unary or binary expression,

and a value returned by a function.

Example i = 0;

1: while (i < 10)
{

cout << i;
i ++;

}

Output:

0123456789

i=10

Example i = 0;

2: while (i < 10)

{
cout << i;
i += 2;

}

Example i = 1;

3: while (i < 10)
{

cout << i;
i += 2;

}

Example 1

Output: even numbers only

02468

i=10

Output: odd numbers only

13579

i=11

 Write C++ program to find the summation of the following series:

sum = 1 + 3 + 5 + 7 + … + 99
Iin other words: find the summation of the odd numbers, between 0 and 100)

#include<iostream.h>

void main()

{
int count = 1;

int sum = 0;

while (count <= 99)

{

sum = sum + count;
count = count + 2;

}

cout << “sum is: “ << sum << endl;

}

Example 2

 Write C++ program to find the cub of a number, while it is positive:

#include<iostream.h>

void main()
{

int num, cubenum;

cout << “Enter positive number \n”;

cin >> num;

while (num > 0)
{

cubenum = num * num * num;

cout << “cube number is :” << cubenum << endl;

cin >> num;

}

Example 3

 Write C++ program to find the summation of the following series:

#include<iostream.h>

void main()

{

int i = 1, n ,sum = 0;
cout << “enter positive number”;

cin >> n;

while (i <= n)

{

sum += i * i ;
i++;

}

cout << “sum is: “ << sum << endl;

}

Example 4

 Write C++ program to find the summation of student’s marks, and
it’s average, assume the student have 8 marks:

#include<iostream.h>

void main()

{
int mark, i, sum = 0;

float av = 0;

i = 1;

while (i <= 8)

{
cout << “enter mark: “;

cin >> mark;

sum = sum + mark;

i++;

}
cout << “sum is: “ << sum << endl;

av = sum / 8;

cout << “average is: “ << av;

}

Example 5

 Write C++ program that display the following board pattern:
* *******

* *******
* *******

* *******
* *******

* *******

* *******
* *******

#include<iostream.h>

void main()

{

int row = 8, column;

while (row-- > 0)
{

column = 8;

if (row % 2 == 0)

cout << “ “;

while (column-- > 0)

cout << “*”;

cout << ‘\n’;

}

}

Example 6

 Write C++ program to check for a line feed and tab of a given
character:

#include<iostream.h>

void main()

{

Char ch;

Cout<<”enter a line \n”;
Ch=cin.get();

While (ch!=’\n’ && ch!=’\t’)

{ cout.put(ch);

Ch=cin.get(); }

}

3. Do / While Statement:

General Form of Do / While statement:

do

statement1 ;

while (condition);

do

{

statement1 ;

statement2 ;

:

statement-n ;

}

while (condition);

Statement s

condition
T

F

Example 1: i = 0;

 do

{

cout << i;

i ++;

}

while (i < 10)

Output:

0123456789

i=10

Example 2: i = 0;

 do

{

cout << i;

i += 2;

}

while (i < 10)

Output: even numbers only

02468

i=10

Example 7

Write C++ program to valid input checking, that accept the

numbers between 50 ... 70 only:

#include<iostream.h>

void main()

{

int accept = 1;
int x, low = 50, high = 70;

do

{

cout << “enter number: “;

cin >> x;

if (x >= low && x <= high)
accept =1;

else

accept = 0;

}

while (! accept);
}

while (accept == 1) or
while (accept != 0)

Example 8

 Write C++ program to find the summation of student’s marks, and
it’s average, assume the student have 8 marks:

#include<iostream.h>

void main()

{

int mark, i, sum = 0;

float av = 0;

i = 1;
do

{

cout << “enter mark: “;

cin >> mark;

sum = sum + mark;
i++;

}

while (i <= 8)

cout << “sum is: “ << sum << endl;

av = sum / 8;
cout << “average is: “ << av;

}

Example 9

 Write C++ program to find the factorial of n:

n! = n * n-1 * n-2 * n-3 * … * 2 * 1

#include<iostream.h>

void main()

{

int n, f = 1;
cout << “enter positive number: “;

cin >> n;

do

{

f = f * n;

n --;
}

while (n > 1);

cout << “factorial is: “ << f;

}

Example 10

 Write C++ program to find the summation of even numbers
#include<iostream.h>

void main()

{

int max,sum,digit;
digit=2;

cout << “enter a number: “;

cin >> max;

sum=0;

do
{

Sum=sum+digit;

Digit+=2;

}

while (digit<=max);
cout << “2+4+…=”<<max<<”sum=”<<sum<<endl; }

LECTURE 9

1. For Statement:

General Form of For statement:

for (initialization ; continuation condition ; update)

statement1 ;

for (initialization ; continuation condition ; update)

{
statement1 ;

statement2 ;

:

}

Example 1: for (i = 0; i < 10; i ++)

cout << i;

Example 2: for (i = 0; i < 10; i += 2)

cout << i;

Example 3: for (i = 1; i < 10; i += 2)

cout << i;

Example 1

Output:

0123456789

Output: even numbers only

02468

Output: odd numbers only

13579

 Write C++ program to add the numbers between 1 and 100:

#include<iostream.h>

void main()
{

int sum = 0;

for (int i = 1; i <= 100; i ++)

sum = sum + i;

cout << “sum is: “ << sum;
}

Example 2

 Write C++ program to find the factorial of n (using for

statement): n! = n * n-1 * n-2 * n-3 * … * 2 * 1

#include<iostream.h>

void main()

{

int n, f = 1;

cout << “enter positive number: “;
cin >> n;

for (int i = 2; i <= n; i ++) for (int i = n; i > 2; i --)

f = f * i;

cout << “factorial is: “ << f;

}

Example 3

 Write C++ program to the result of the following:

#include<iostream.h>

void main()

{

int sum = 0;
for (int i = 1; i <= 20; i ++)

sum = sum + (i * i);

cout << “The sum is: “ << sum;

}

Example 4

 Write C++ program to read 10 integer numbers, and find the sum
of positive number only:

#include<iostream.h>

void main()
{

int num, sum = 0;

for (int i = 1; i <= 10; i ++)

{

cout << “enter your number: “;
cin >> num;

if (num > 0) sum = sum + num;

}

cout << “The sum is: “ << sum;

}

Example 5

 Write C++ program to print the following series: 1, 2, 4, 8, 16, 32, 64

#include<iostream.h>

void main()

{

int x;

for (x = 1; x < 65; x *= 2)
cout << x <<” “;

}

Example 6

Write C++ program to print the following:

#include<iostream.h> 1 10

2 9 void main()

{ 3 8

int x; 4 7

for (x = 1; x < 7; ++ x) 5 6

cout << x <<”\t“ << 11 – x << endl; 6 5

}

Example 7

 Write C++ program to read a line using for loop

#include<iostream.h>

void main()

{

Char ch;
cout << “Enter a line\n“;

for (;(ch=cin.get())!=’\n’;) {

cout<<”Your character is:”<<endl;

cout.put(ch);

}
}

2. More about For Statement:

 We can use more than one control with for statement, as follow:

for (int m = 1, int n = 8 ; m < n ; m ++ , n --)

 We can create infinite loop, as follow:

for (; ;)

3. Nested Loops:

We can put loops one inside another to solve a certain programming

problems. Loops may be nested as follows:

Example 8

 Write C++ program to evaluate the following series:

#include<iostream.h>

void main()
{

int i, j, sum = 0;

for (i = 1; i <= 5; i ++)

for (j = 1; j <= 10; j ++)

sum = sum + (i + 2 * j);
cout << “sum is:“ << sum;

}

Example 9

 Write C++ program to print the following figure:
+
+ +

+ + +

++++

+++++

++++++

+++++++

++++++++

+++++++++

++++++++++

#include<iostream.h>

void main()

{

int i, j;
for (i = 1; i <= 10; i ++)

{

for (j = 1; j <= i; j ++)

cout << “ + “;

cout << “\n“;
}

}

Example 10

 Write C++ program to read a line using for loop

#include<iostream.h>

void main()

{

cout << “Explaining the nested for loop\n“;
for (int i=0;i<=2;i++) {

cout<<i;

for (int k=0;k<=2;k++) {

cout<<”computer sciences department \n”;

} } }

Exercise:

What is the output of the following C++ program?

#include<iostream.h>

void main()

{

int i, j, k;
for (i = 1; i <= 2; i ++)

{

for (j = 1; j <= 3; j ++)

{

for (k = 1; k <= 4; k ++)
cout << “ + “;

cout << “\n“;

}

cout << “\n“;

}
}

LECTURE 10

1. Breaking Control Statements:

For effective handling of the loop statements, C== allows the use of

the following types of control break statements:

(a) Break Control Statement:

The break statement is used to terminate the control from the loop

statements of the case-switch structure. The break statement is normally used

in the switch-case loop and in each case condition; the break statement

must be used. If not, the control will be transferred to the subsequent case

condition also. The general format of the break statement is : (Break;)

Example 1:

Example 2:

for (i = 1; i < 100; i ++)

{

cout << i;

if (i == 10) break;

}

for (i = 1; i < 10; ++ i)

for (j = 1; j < 20; ++ j)

{

cout << i * j << endl;

if (j == 10) break;

}

Output:

12345678910

Example 3:

Switch(day) {

Case ‘1’:cout<<”Monday\n”;

Break;

Case ‘2’: …..

}

Example 1

 Write C++ program to check if zero or negative value found:

#include<iostream.h>

void main()

{

int value,i;

i=0;

while (i<=10) {
cout<<”enter a number \n”;

cin>>value;

if (value<=0) {

cout<<”Zero or negative value found \n”;

brek;
}

i++

}

}

(b) Continue Control Statements:

The continue is used to repeat the same operations once again even it

it checks the error. Its general syntax is: (continue;)

It is used for the inverse operation of the break statement. The following

program segment will process only the positive integers. Whenever a zero or

negative value is encountered, the computer will display the message “zero

or negative value found” as an error and it continues the same loop as long

as the given condition is satisfied.

Cin>>value;

While (value <=100) {
If (value <=0)

Cout<<“zero or negative value found\n”;

Continue;

} }

 Example 1: Example 2:

 do

 { n = 1;

 cin >> x; for (i = 1; i < 5; ++i)
 cin >> n; {

 if (n < 1) continue; cin >> x;

 cout << x; n = 5 * x++ * (-1) / n;

-- n; if (n < 1) continue;

} cout << n;

while (n < 1); }

(c) Goto Statement:

The goto statement is used to alter the program execution sequence

by transferring the control to some other part of the program. Its general

syntax is: (goto label;)

There are two ways of using this statement:

1. Unconditional Goto: Itis used just to transfer the control from one part

of the programto the other part without checking any condition. It is

difficult in use.

Example 2

 Write C++ program to check if zero or negative value found:

#include<iostream.h>

void main()

{

Start: cout<<”***\n”;
Goto start;

}

2. Conditional Goto: Itis used to transfer the control of the execution from

one part of the program to the other in certian conditional cases.

Example 2

 Write C++ program to check if zero or negative value found:

#include<iostream.h>

void main()

{

Int value,i=0;

While i<=10) {

Cout<<”enter a number \n”;
Cin>>value;

Cout<<”zero or negative value found \n”;

Goto error;

}

Error:

Cout<<”input data error \n”;

}

Using For Statement Using While Statement Using Do/While Statement

Q1: Find the summation of the numbers between 1 and 100.

for(i=1 ; i<=100 ; i++)

i = 1;

i = 1;

s = s + i; while (i <= 100) do
 { {
 s = s + i; s = s + i;

 i++; i++;
 } }

 while (i <= 100);

--
Q2: Find the factorial of n.

cin >> n; cin >> n; cin >> n;
for(i=2 ; i<=n ; i++) i = 2; i = 2;

f = f * i; while (i <= n) do

 { {
 f = f * i; f = f * i;
 i++; i++;

 } }
 while (i <= n);

--

Q3: To find the result of the following: .

for(i=1 ; i<=20 ; i++)

i = 1;

i = 1;

s = s + (i *i); while (i <= 20) do

 { {
 s = s + (i *i); s = s + (i *i);
 i++; i++;

 } }
 while (i <= 20);

--
Q4: Read 10 numbers, and find the sum of the positive numbers only.

for(i=1 ; i<=10 ; i++) i = 1; i = 1;
{ while (i <= 10) do

cin >> x; { {

if (x>0) s = s + x; cin >> x; cin >> x;
} if (x>0) s = s + x; if (x>0) s = s + x;
 i++; i++;

 } }
 while (i <= 10);

Q5: Represent the following series: 1, 2, 4, 8, 16, 32, 64.

for(i=1 ; i<65 ; i*=2) i = 1; i = 1;

cout << i; while (i<65) do
 { {
 cout << i; cout << i;

 i*=2; i*=2;
 } }

 while (i<65);

--
Q6: Find the sum of the following s = 1 + 3 + 5 + 7 + … + 99.

for(i=1 ; i<=99 ; i+=2) i = 1; i = 1;
s = s + i; while (i<=99) do

 { {

 s = s + i; s = s + i;
 i+=2; i+=2;
 } }

 while (i<=99);

--
Q7: Find the sum and average of the 8 degrees of the student.
for(i=1 ; i<=8 ; i++) i = 1; i = 1;
{ while (i<=8) do

cin >> d; { {
s = s + d; cin >> d; cin >> d;

} s = s + d; s = s + d;

av = s / 8; i++; i++;
 } }
 av = s / 8; while (i<=8);

 av = s / 8;

--
Q8: Find the cub of n numbers, while the entered number is a positive.

Can’t be solve this problem
using For statement

cin >> x; do
while (x > 0) {
{ cin >> x;

c = x * x * x; c = x * x * x;
cin >> x; }

} while (x > 0);

WORK SHEET (4)

Iteration Statements

Using While Statement:

Q1: Write C++ program to find the summation of the odd numbers,

between 0 and 100.

Q2: Write C++ program to inverse an integer number.

For example: 765432 234567

Q3: Write C++ program to find G.C.D between m & n.

Q4: Write C++ program to display the first 100 odd numbers.

Using Do/While Statement:

Q5: What are the output of the following segment of C++ code:

int i;

i = 12;

do

{

cout << i << endl;

i --;

}

while (i > 0);

Q6: What are the output of the following segment of C++ code:

int count = 1;

do

{

cout << (count % 2 ? “****” : “+++++”) <<

endl; ++ count;

}

while (count <= 10);

Q7: Write C++ program that utilize looping and the escape sequence \t to

print the following table of value:

N 10*N 100*N 1000 * N

1 10 100 1000

2 20 200 2000
3 30 300 3000

4 40 400 4000

Hint:\t to print six spaces.

Using For Statement:

Q8: Write C++ program to read 7 marks, if pass in all marks (>=50) print

“pass” otherwise print “fail”.

Q11: Write C++ program to add the numbers between 1 and 100 and find its

average.

Q12: Write C++ program to print the following figures:
1

3 3 3

55555

7777777

999999999

7777777

55555

3 3 3

1

++++++++++
+++++++++

++++++++

+++++++

++++++

+++++

++++

+ + +

+ +

+

Q13: Write C++ program to find e from the following series:

e = 1 + (1/1!) + (1/2!) + (1/3!) + … + (1/n!)

Q14: Write C++ program to find e from the following series:

e = 1 + x + (x² / 2!) + (x³ / 3!) + … (xª / a!)

Q15: Write C++ program to read 10 marks, suppose the student pass if all

marks greater than or equal 50, and the average greater than or

equal 50. If student fails in some lessons then print the number of these

lessons, if student fails in average then print “fail in average”.

Q16: What is the output of the following C++ segment of code:

for (; ;)

{

cout << “enter your number: “;

cin >> x;

if (x % 2 == 0) continue;

if (x % 3 == 0) break;

cout << “Bottom of loop” << endl;

}

Q17: What is the output of the following C++ segment of code:

for (I = 0; I < 8; I ++)

{

if (I % 2 == 0) cout << I + 1 << endl;

else if (I % 3 == 0) continue;

else if (I % 5 == 0) break;

cout << “end program \n”;

}

cout << “end …”;

Q18: Write C++ program to print the following figure:

1

2 1

3 2 1
4 3 2 1

5 4321

Q19: Write C++ program to print the following searies:

1. Sum=1+2
2
+4

2
+…+n

2

2. Sum=1-3
x
+5

x
-…+n

x

3. Sum=1+1/1!+2/2!+3/3!+…+n/n! where n!=1*2*3*…*n

LECTURE 11

1. Functions:

A function is a set of statements designed to accomplish a particular

task. Experience has shown that the best way to develop and maintain a

large program is to construct it from smaller pieces or (modules). Modules in

C++ are called functions.

Functions are very useful to read, write, debug and modify complex

programs. They can also be easily incorporated in the main program. In C++,

the main() itself is a function that means the main function is invoking the

other functions to perform various tasks. The main advantages of using a

function are:

 Easy to write a correct small function.

 Easy to read, write, and debug a function.

 Easier to maintain or modify such a function.

 Small functions tend to be self documenting and highly readable.

 It can be called any number of times in any place with different

parameters.

2. Defining a Function

A function definition has a name, parentheses pair containing zero or

more parameters and a body. For each parameter, there should be a

corresponding declaration that occurs before the body. Any parameter not

declared is taken to be an integer by default. The general format of the

function definition is :

General Form of Function:

return-type function-name (parameters-list)

{
(body of function)

statement1 ;

statement2 ;

:

statement-n ;

(return something)
}

The type of the function may be int, float, char, etc. It may be declared

as type (void), which informs the compiler not to the calling program. For

example:

Void function_name (---)

Int function_name (---)

Any variable declared in the body of a function is said to be local to that

function. Other variables which are not declared either as arguments or in the

function body are considered “global” to the function and must be defined

externally. For example

 Void square (int a, int b) → a,b are the formal arguments.

 Float output (void) → function without formal arguments

 Example 1: Example 2:

 void printmessage () int max (int a, int b)
 { {

 cout << “University of Technology”; int c;
 } if (a > b) c = a;

 else c = b;

 void main () return (c);
 { }

 printmessage();

 } void main ()
 {

 cout << max (5, 6);

 }

3. Return Statement:

The keyword return is used to terminate function and return a value to

its caller. The return statement may also be used to exit a function without

returning a value. The return statement may or may not include an expression.

Its general syntax is:

Return;

Return (expression);

The return statements terminate the execution of the function and pass the

control back to the calling environment.

Example 1

 Write C++ program to calculate the squared value of a number
passed from main function. Use this function in a program to calculate
the squares of numbers from 1 to 10:

#include<iostream.h>

int square (int y)

{

int z;

z = y * y;
return (z);

}

void main()

{
int x;

for (x=1; x <= 10; x++)

cout << square (x) << endl;

}

Example 2

 Write C++ program using function to calculate the average of two
numbers entered by the user in the main program:

#include<iostream.h>

float aver (int x1, int x2)

{

float z;

z = (x1 + x2) / 2.0;

return (z);
}

void main()

{

float x;
int num1,num2;

cout << "Enter 2 positive number \n";

cin >> num1 >> num2;

x = aver (num1, num2);

cout << x;
}

Example 3

 Write C++ program, using function, to find the summation of the
following series:

#include<iostream.h>

int summation (int x)
{

int i = 1, sum = 0;

while (i <= x)

{

sum += i * i ;

i++;
}

return (sum);

}

void main ()

{

int n ,s;

cout << "enter positive number";

cin >> n;
s = summation (n);

cout << "sum is: " << s << endl;

}

Example 4

 Write a function to find the largest integer among three integers
entered by the user in the main function.

#include <iostream.h>

int max(int y1, int y2, int y3)

{

int big;
big=y1;

if (y2>big) big=y2;

if (y3>big) big=y3;

return (big);

}

void main()

{
int largest,x1,x2,x3;

cout<<"Enter 3 integer numbers:";

cin>>x1>>x2>>x3;

largest=max(x1,x2,x3);

cout<<largest;

}

Example 5

 Write program in C++, using function, presentation for logic gates
(AND, OR ,NAND, X-OR,NOT) by in A,B enter from user.

#include<iostream.h>

void ANDF(int,int);

void ORF(int,int);

void XORF(int,int);
void NOTF(int);

void main()

{ char s;int a,b;

cout<<"Enter the value A,B :";
cin>>a>>b;

cout<<"Enter the select value \n";

cout<<"\ta--(AND gate)\n\to--(OR gate)\n\tx--(X-OR)\n\tn--(NOT

gate)\n\te--(<<EXIT>> :";

cin>>s;
switch(s)

{

case 'a':ANDF(a,b);break;

case 'o':ORF(a,b);break;

case 'x':XORF(a,b);break;
case 'n':NOTF(a);cout<<" ";NOTF(b);break;

case 'e':break;

deafult:cout<<":bad choose";

}

}

void ANDF(int a,int b)

{
cout<<(a&&b);

}

void ORF(int a,int b)

{

cout<<(a||b);
}

void XORF(int a,int b)

{

cout<<(a^b);

}
void NOTF(int a)

{

cout<<(!a);

}

4. Passing Parameters:

There are two main methods for passing parameters to a program:

1) passing by value, and 2) passing by reference.

A- Passing by Value:

When parameters are passed by value, a copy of the parameters

value is taken from the calling function and passed to the called function. The

original variables inside the calling function, regardless of changes made by

the function to it are parameters will not change. All the pervious examples

used this method.

B- Passing by Reference:

When parameters are passed by reference their addresses are copied

to the corresponding arguments in the called function, instead of copying

their values. Thus pointers are usually used in function arguments list to receive

passed references.

This method is more efficient and provides higher execution speed than the

call by value method, but call by value is more direct and easy to use.

Example 6:

 The following program illustrates passing parameter by reference.

#include <iostream.h>

void swap(int *a,int *b)

{
int t;

t=*a;

*a=*b;

*b=t;

}

void main()

{
int x=10;

int y=15;

cout<<"x before swapping is:"<<x<<"\n";

cout<<"y before swapping is:"<<y<<"\n";

swap(&x,&y);

cout<<"x after swapping is:"<<x<<"\n";

cout<<"y after swapping is:"<<y<<"\n";

}

LECTURE 12

1. Types of Functions:

The user defined functions may be classified in the following three ways

based on the formal arguments passed and the usage of the return

statement, and based on that, there are three of user defined functions:

1. A function is invoked without passing any formal argument from the

calling portion of a program and also the function does not return back

any value to the called function.

2. A function is invoked with formal arguments from the calling portion of

a program but the function does not return back any value to the

calling portion.

3. A function is invoked with formal arguments from the calling portion of

a program which return back a value to the calling environment.

Here are two programs that find the square of the number using and not

using a return statement.

Example 1:

include <iostream.h> # include <iostream.h>

Void main() Void main()

{ {

Void square (int); float square (float);

Int max; float I,max,value;

Cout<<”Enter a value for n ?\n”; max=1.5;

Cin>>max; i=-1.5;

For (int i=0;i<=max-1;++i) while (i<=max) {

Square (i) value=square(i);

} Cout<<”i=”<<i<<”square=”<<value<<endl;

Void square(int n) I=i+0.5;

{ }

Float value; }

Value=n*n; Float square(float n)

Cout<<”i=”<<n<<”square=”<<value<<endl; {

} Float value;

 Value=n*n;
 Return (value);

 }

Example 2:

 write C++ program, using function to find the sumation of the given

series: Sum=x-(x3)/3!+(x5)/5!- …(xn)/n!

#include <iostream.h>

Void main(void)

{

Long int fact (int);
Float power(float,int);

Float sum,temp,x,pow;

Int sign,I,n;

Longint factorial;

Cout<<”Enter a value for n?”<<endl;

Cin>>n;

Cout<<”Enter a value for x ?”<<endl;

Cin>>x;

I=3; sum=x; sign=1;
While (i<=n) {

Factval=fact(i);

Pow=power(x,i);

Sign=(-1)*sign;

Temp=sign*pow/factval;
Sum=sum+temp;

I=i+2;

}

Cout<<”sum of series =”<<sum;

}

Long int fact (int max)

{

Long intvalue;
Value=1;

For(int i=1;i<=max;++i)

Value=value*I;

Return (value);

}

Float power (float x, int n)

{

Float value2;

Value2=1;

For(int j=1;j<=n;++j)
Value2=value2*x;

Return(value2);

}

2. Actual and Formal Arguments:

The arguments may be classified under two groups, actual and formal

arguments:

(a) Actual arguments: An actual argument is a variable or an expression

contained in a function call that replaces the formal parameter which

is a part of the function declaration. Sometimes, a function may be

called by a portion of a program with some parameters and these

parameters are known as the actual arguments.

(b) Formal arguments: are the parameters present in a function definition

which may also be called as dummy arguments or the parametric

variables. When the function is invoked, the formal parameters are

replaced by the actual parameters. Formal arguments may be

declared by the same name or by different names in calling a portion

of the program or in a called function but the data types should b e

the same in both blocks

For example:

include <iostream.h>

Void main()

{
Int x,y;

Void output (int x, int y); // function declaration

__

__

Output (x,y); // x and y are actual arguments
}

Void output (int a, int b) // forma or dummy arguments

{

// body of function

}

3. Local and Global variables:

The variables in general bay be classified as local or global variables.

(a) Local variables: Identifiers, variables and functions in a block are said to

belong to a particular block or function and these identifiers are known

as the local parameters or variables. Local variables are defined inside

a function block or a compound statement. For example,

Void func (int I, int j)

{

Int k,m;

……

}

// local variables

// bodyofthe function

Local variables are referred only the particular part of a block or a function.

Same variable name may be given to different parts of a function or a block

and each variable will be treated as a different entity.

(b) Global variables: these are variables defined outside the main function

block. These variables are referred by the same data type and by the

same name through out the program in both the calling portion of the

program and in the function block.

Example 3:

 A program to find the sum of the given two numbers using the global

variables.

#include <iostream.h>
Int x;

Int y=5;

void main()

{

X=10;
Void sum(void);

Sum();

}

Void sum(void)

{
Int sum;

Sum=x+y;

Cout<<”x=”<<x<<endl;

Cout<<”y=”<<y<<endl;

Cout<<”sum=”<<sum<<endl;
}

4. Recursive Functions:

A function which calls itself directly or indirectly again and again is

known as the recursive function. Recursive functions are very useful while

constructing the data structures like linked lists, double linked lists, and trees.

There is a distinct difference between normal and recursive functions. A

normal function will be invoked by the main function whenever the function

name is used, where as the recursive function will be invoked by itself directly

or indirectly as long as the given condition is satisfied. Forexample,

include <iostrem.h>

Void main(void)

{
Void func1(); //function declaration

Func1(); //function calling

}
Void func1() //function definition

{

Func1(); //function calls recursively
}

Example 4:

 A program to find the sum of the given non negative integer numbers

using a recursive function sum=1+2+3+4+…+n

#include <iostream.h>
Void main(void)
{

Int sum(int);

Int n,temp;

Cout<<”Enter any integer number”<<endl;

Cin>>n;
Temp=sum(n);

Cout<<”value=”<<n<<”and its sum=”<<temp;

}

Int sum(int n) //recursive function

{
Int sum(int); //local function declaration

Int value=0;

If (n==0)

Return (value);

Else
Value=n+sum(n-1);

Return (value);

}

The output of the above program:

Enter any integer number

Value = 11 and its sum=66

The following illustrations will be helpful to understand the recursive function

For value 1 For value 2 For value 3

=1+sum(1-1) =2+sum(2-1) =3+sum(3-1)

=1+0 =2+1+sum(1-1) =3+sum(2-1)

=1 =3 =3+2+1+sum(1-1)

 =6

Example 5:

 A program to find the factorial (n!) of the given number using the

recursive function.Its the product of all integers from 1 to n (n is non negative)

(so n!=1 if n=0 and n!=n(n-1) if n>0)

#include <iostream.h>
Void main(void)
{

Long int fact (long int);

Int x,n;

Cout<<”Enter any integer number”<<endl;

Cin>>n;
X=fact(n);

Cout<<”value=”<<n<<”and its factorial=”;

Cout<<x<<endl;

}

Long int fact (long int n) //recursive function
{

Long int fact(long int); //local function declaration

Int value =1;

If (n==1)

Return(value)
Else

{value=n*fact(n-1);

Return(value);

} }

The output of the above program:

Enter any integer number

Value = 5 and its factorial=120

The following illustrations will be helpful to understand the recursive function

For value 1 For value 2 For value 3

=1*fact(1-1) =2*fact(2-1) =3*fact(3-1)

=1 =2*1 =3*2*fact(2-1)

 =2 3*2*1

 =6

WORK SHEET (5)

Functions

Q1: Write a C++ program, using function, to counts uppercase letter in a 20

letters entered by the user in the main program.

Q2: Write a C++ program, using function, that reads two integers (feet and

inches) representing distance, then converts this distance to meter.
Note: 1 foot = 12 inch

 1 inch = 2.54 Cm

 i.e.:

or inches: 9 Input: feet: 8

Q3: Write a C++ program, using function, which reads an integer value (T)

representing time in seconds, and converts it to equivalent hours (hr),

minutes (mn), and seconds (sec), in the following form:

hr : mn : sec

i.e.:

Input: 4000

Output: 1 : 6 : 40

Q4: Write a C++ program, using function, to see if a number is an integer

(odd or even) or not an integer.

Q5: Write a C++ program, using function, to represent the permutation of n.

Q6: Write a C++ program, using function, to inputs a student’s average and

returns 4 if student’s average is 90-100, 3 if the average is 80-89, 2 if the

average is 70-79, 1 if the average is 60-69, and 0 if the average is lower

than 60.

Q7: The Fibonacci Series is: 0, 1, 1, 2, 3, 5, 8, 13, 21, … It begins with the terms

0 and 1and has the property that each succeeding term is the sum of

the two preceding terms. Write a C++ program, using function, to

calculate the nth Fibonacci number.

Q8: Write a C++ program, using function, to calculate the factorial of an

integer entered by the user at the main program.

Q9: Write a C++ program, using function, to evaluate the following

equation:

Q10: Write a C++ program, using function, to test the year if it’s a leap or not.

Note: use y % 4 == 0 && y % 100 != 0 :: y % 400 ==0

Q11:
 Write a C++ program, using function, to find .

Note: use pow instruction with math.h library.

Q12:

Q13:

Q14:

Q15:

Write C++ program, using function, to inverse an integer number:

For example: 765432 234567

Write C++ program, using function, to find the summation of student’s

marks, and it’s average, assume the student have 8 marks.

Write C++ program, using function, to convert any char. From capital

to small or from small to capital.

Write C++ program using recursive function to find the power of n

numbers.

LECTURE 13

1. Arrays:

An array is a consecutive group of homogeneous memory locations.

Each element (location) can be referred to using the array name along with

an integer that denotes the relative position of that element within the array.

The data items grouped in an array can be simple types like int or float, or can

be user-defined types like structures and objects.

2. Array of One Dimension:

It is a single variable specifies each array element. The declaration of

one dimensional arrays is:

General Form of 1D-Array:

data-type Array-name [size];

Examples: int age [10];

 int num [30];
 float degree[5];

 char a [15];

The item in an array are called elements (in contrast to the items in a

structure which are called members). The elements in an array are of the

same type only the values vary.

3. Initializing Array Elements:

- The first element of array age:

age [0] = 18;

- The last element of array

age: age [9] = 19;

- All elements of array age:

age [9] = { 18, 17, 18 ,18 ,19, 20 ,17, 18 ,19 };

- int x [] = { 12, 3, 5, 0, 11, 7, 30, 100, 22 };

- int y [10] = { 8, 10, 13, 15, 0, 1, 17, 22};

4. Accessing Array Elements:

We access each array element by written name of array, followed by

brackets delimiting a variable (or constant) in the brackets which are called

the array index.

- Accessing the first element of array num to variable x:
x = num [0];

- Accessing the last element of array num to variable y:

y = num [9];

- cout << num [0] + num [9];

- num [0] = num [1] + num[2];

- num [7] = num [7] + 3; num [7] += 3;

5. Read / Write / Process Array Elements:

- cout << num [4];

- for (int i=0; i<10; i++)

cout << num[i];

- if (num [5] > 5)

cout << “greater”;

- for (int i=9; i>=0; i++)

cout << num[i];

- for (int i=0; i<10; i++)

cin >> num[i];

- sum=0;

for (int i=0; i<10; i++)

sum = sum + num[i];

Example 1

 Write C++ program to display 2nd and 5th elements of array
distance:

#include<iostream.h>

void main()

{
double distance[] = { 23.14, 70.52, 104.08, 468.78, 6.28};

cout << “2nd element is: “ << distance[1] << endl; cout

<< “5th element is: “ << distance[4];
}

Example 2

 Write C++ program to read 5 numbers and print it in reverse order:

#include<iostream.h>

void main()

{

int a [5];
cout << "Enter 5 numbers \n";

for (int i =0; i <5; i++)

{

cout << i << “: “;

cin >> a [i];
cout << “\n”;

}

cout << “The reverse order is: \n”;

for (i =4; i >=0; i--)

cout << i << “: “ << a [i] << endl;
}

Example 3

 Write C++ program, to find the summation of array elements:

#include<iostream.h>

void main ()

{

int const L = 10;
int a [L];

int sum = 0;

cout << "enter 10 numbers \n";

for (int i =0; i <L; i++)

{
cout << “enter value “ << i << “: “;

cin >> a [i];

sum += a [i];

}

cout << "sum is: " << sum << endl;

}

Example 4

 Write C++ program, to find the minimum value in array of 8
numbers:

#include<iostream.h>

void main ()

{ int n = 8; int a [] = { 18, 25, 36, 44, 12, 60, 75, 89 };

int min = a [0];

for (int i = 0; i < n; i++)

if (a [i] < min) min = a [i];
cout << "The minimum number in array is: " << min; }

Example 5

 Write C++ program, to give the number of days in each month:

#include<iostream.h>

void main ()

{

Int month, day, total_days;

Int days_per_month[12]={31,28,31,30,31,30,31,31,30,31,30,31}

Cout<<”\n Enter month(1 to 12):”; Cin>>month;

Cout<<”enter day(1 to 31):”;

Cin>>day;

Total_days=day;
For (int j=0;j<month-1;j++)

Total_day+=day_per_month[j];

Cout<<”Total days from start of year is:”<<total_days;

}

Example 6

 Write C++ program, using function, to find (search) X value in
array, and return the index of it’s location:

#include<iostream.h>

int search(int a[], int y)

{

int i= 0;

while (a [i] != y)

i++;

return (i);

}

void main ()

{

int X, f;

int a [10] = { 18, 25, 36, 44, 12, 60, 75, 89, 10, 50 };

cout << “enter value to find it: “; cin >> X;

f= search (a, X);
cout << “the value “ << X << “ is found in location “<< f;

}

Example 7

 Write C++ program, to split the odd numbers and even numbers of

one array into two arrays:
a =[1,2,3,4,5,6,7,8,…,20] aodd

= [1, 3, 5, 7, … , 19]

aeven = [2, 4, 6, 8, … , 20]

#include<iostream.h>

void main ()

{

int a [20]= { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 };
int aodd[20], aeven [20];

int i ,o=0, e=0;

for (i=0 ; i<20; i++)

if (a[i] % 2 !=0)

{
aodd[o]=a[i];

o=o+1;

}

else

{

aeven[e]=a[i];
e=e+1;

}

for (i=0 ; i<o; i++)

cout<<aodd[i]<<" ";

cout<<endl;

for (i=0 ; i<e; i++)

cout<<aeven[i]<<" ";

}

LECTURE 14

1. Array of Two Dimension:

Arrays can have higher dimension. There can be arrays of two

dimension which is array of arrays. It is accessed with two index. Also there

can be arrays of dimension higher than two.

General Form of 2D-Array:

data-type Array-name [Row-size] [Col-size];

Examples: int a [10] [10];

 int num [3] [4];

2. Initializing 2D-Array Elements:

- The first element of array age:

1

2

3

a [2] [3] = { {1, 2, 3} , {4, 5, 6} };

 4 5 6

3. Read / Write / Process Array Elements

Example 1

 Write C++ program, to read 15 numbers, 5 numbers per row, the
print them:

#include<iostream.h>

void main ()

{
int a [3] [5];

int i , j;

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 5; j++)

cin >> a [i] [j];

for (i = 0 ; i < 3; i++)

{

for (j = 0 ; j < 5; j++)

cout << a [i] [j];

cout << endl;

}

}

Example 2

 Write C++ program, to read 4*4 2D-array, then find the summation
of the array elements, finally print these elements:

#include<iostream.h>

void main ()

{

int a [4] [4];

int i , j, sum = 0;

for (i = 0 ; i < 4; i++)

for (j = 0 ; j < 4; j++)
cin >> a [i] [j];

for (i = 0 ; i < 4; i++)

for (j = 0 ; j < 4; j++)

sum += a [i] [j];

cout << “summation is: “ << sum << endl;

for (i = 0 ; i < 4; i++)

{
for (j = 0 ; j < 4; j++)

cout << a [i] [j];

cout << endl;

}

}

Example 3

 Write C++ program, to read 3*4 2D-array, then find the summation
of each row:

#include<iostream.h>

void main ()

{

int a [3] [4];
int i , j, sum = 0;

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 4; j++)

cin >> a [i] [j];

for (i = 0 ; i < 3; i++)

{

sum = 0;
for (j = 0 ; j < 4; j++)

sum += a [i] [j];

cout << “summation of row “ << i << “ is: “ << sum << endl;

}

}

Example 4

 Write C++ program, to read 3*4 2D-array, then replace each value
equal 5 with 0:

#include<iostream.h>

void main ()

{

int a [3] [4];
int i , j;

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 4; j++)

cin >> a [i] [j];

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 4; j++)
if (a [i] [j] == 5) a [i] [j] = 0;

for (i = 0 ; i < 3; i++)

{
for (j = 0 ; j < 4; j++)

cout << a [i] [j];

cout << endl;

}

}

Example 5

 Write C++ program, to addition two 3*4 arrays:

#include<iostream.h>

void main ()

{

int a [3] [4], b [3] [4], c [3] [4];

int i , j;

cout << "enter element of array A: \n";
for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 4; j++)

cin >> a [i] [j];

cout << "enter element of array B: \n";

for (i = 0 ; i < 3; i++)
for (j = 0 ; j < 4; j++)

cin >> b [i] [j];

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 4; j++)

c [i] [j] = a [i] [j] + b [i] [j];

for (i = 0 ; i < 3; i++)
{

for (j = 0 ; j < 4; j++)

cout << c [i] [j];

cout << endl;

}
}

Example 6

 Write C++ program, to convert 2D-array into 1D-array:

#include<iostream.h>

void main ()

{
int a [3] [4];

int b [12];

int i , j, k = 0;

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 4; j++)

cin >> a [i] [j];

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 4; j++)
{

b [k] = a [i] [j];

k++;

}

for (i = 0 ; i < k; i++)

cout << b [i];
}

Example 7

 Write C++ program, to replace each element in the main
diameter (diagonal) with zero:

#include<iostream.h>

void main ()

{
int a [3] [3];

int i , j;

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 3; j++)

cin >> a [i] [j];

for (i = 0 ; i < 3; i++)

for (j = 0 ; j < 3; j++)

if (i == j) a [i] [j] = 0;

for (i = 0 ; i < 3; i++)

{

for (j = 0 ; j < 3; j++)

cout << a [i] [j];

cout << endl;

}
}

Example 8

 Write C++ program, print the square root of an array:

#include<iostream.h>

void main ()

{
int a [3] [3] , b [3] [3];

int i , j;

for (i = 0 ; i < 3; i++) {

for (j = 0 ; j < 3; j++) {

b[i][j]= sqrt(a[i][j]);
cout << b [i] [j];

} } }

Example 9

 Write C++ program, to read 3*3 2D-array, then find the summation

of the main diagonal and its secondary diagonal of the array

elements, finally print these elements:

#include<iostream.h>

void main ()

{

int a [3] [3];

int i , j, x , y;

for (i = 0 ; i < 3; i++) {
for (j = 0 ; j < 3; j++) {

cin >> a [i] [j];

if (i == j)

x=x+a[i][j];

if (i + j =4)

y=y+a[i][j];
} }

cout << “summation of diagonal is: “ << x << endl;

cout << “summation of inverse diagonal is: “ << y << endl;

}

WORK SHEET (6) Arrays

Q1: Write a C++ program, using function, to find if the array’s elements are

in order or not.

Q2: Write a C++ program, using function, to compute the number of zeros

in the array.

Q3: Write a C++ program, using function, to find the value of array C from

add array A and array B. C[i] = A [i] + B [i];

Q4: Write a C++ program, using function, to multiply the array elements by

2. A[i] = A [i] * 2;

Q5: Write a C++ program, using function, to reads temperatures over the

30 days and calculate the average of them.

Q6: Write a C++ program, using function, to merge two arrays in one array.

Q7: Write C++ program, to read 3*4 2D-array, then find the summation of

each col.

Q8: Write C++ program, to replace each element in the second diameter

(diagonal) with zero.

Q9: Write C++ program, to replace the elements of the main diameter with

the elements of the second diameter.

Q10: Write C++ program, to find the summation of odd numbers in 2D-array.

Q11: Write C++ program, to find (search) X value in 2D-array, and return the

index of it’s location.

Q12: Write C++ program, to convert 1D-array that size [16] to 2D-array that

size of [4] [4].

Q13: Write C++ program, to read A[n, n] of character, then find array B and

array C, such that B contain only capital letters and C contain only

small letters.

Q14: Write C++ program, to read A[n, n] of numbers, then put 10 instead

each even positive number.

Q15: Write C++ program, to read A[n, n] of numbers, then put 10 instead

each even positive number in the first diagonal.

Q16: Write C++ program, to read A[n, n] of numbers, then find the minimum

number in array.

Q17: Write C++ program, to exchange row1 and row3 in 4*3 array.

Q18: Write C++ program, to exchange row0 with col3 in 4*4 array.

Q19: Write C++ program, to find the greatest number in the second

diagonal, in 3*3 array.

Q20: Write C++ program, to read X[n], and rotate the elements to the left

by one position.

i.e:

Q21: Write C++ program, to read A[n] and a location Z then delete the

number at location Z from the array, and print the new array after

deletion.

Q22: Write C++ program to order the array in ascending and descending

order.

Q23: Write C++ program to read (n) no.s and find the average of the even

no. on it.

Q24: Create the array (b) from (a).

1 2 3 6

4 5 6 10

7 8 9 10

Q25: Create the arrays bellow.

1 1 1 1 2 1 1 1

2 2 2 2 1 2 1 1
3 3 3 3 1 1 2 1

4 4 4 4 1 1 1 2

LECTURE 15

1. String:

In C++ strings of characters are implemented as an array of characters. In

addition a special null character, represented by \0, is appended to the end

of string to indicate the end of the string.

General Form of String:

char String-name [size];

Examples: char name [10] = “Mazin Alaa”;

 ’M’ , ’a’ , ’z’ , ’i’ , ’n’ , ’ ’ , ’A’ , ’l’ , ’a’ , ’a’ , ’\0’

char str [] = “ABCD“;

 ’A’ , ’B’ , ’C’ , ’D’ , ’\0’

str [0] : ’A’

str [1] : ’B’

str [2] : ’C’

str [3] : ’D’

str [4] : ’\0’ null

2. Read / Write / Process Array Elements:

Example 1

Write C++ program to print string, then print it character by

character:

#include<iostream.h>

void main()

{

char s [] = “ABCD”;

cout << “Your String is: “ << s << endl;

for (int i =0; i < 5; i++)

cout << “S[“ << i << “] is: “ << s [i] << endl;

Output is:
Your String is: ABCD

S[0] is: A

S[1] is: B

S[2] is: C

S[3] is: D

S[4] is:

Example 2

 Write C++ program to convert each lower case letter to upper
case letter:

#include<iostream.h>

#include<ctype.h>

void main()

{

char s [] = “abcd”;

cout << s << endl;

for (int i =0; i < 4; i++)

s [i] = char(toupper (s[i]));

cout << s;

}

Note:

There are several ways to read and write (there are several

input/output function) like:
cin.getline (str, 10);
cin.get (ch);

cin.ignor (80, ‘\n’);
cin.putback (ch);
cout.put (ch);

Apply it …

3. Member Function of String:

The string library has many member functions of string like:

 Member Function Functionality Example

strlen (string)

 Return the length of the a [] = "abcd";

string

cout << strlen (a);

strcpy (string2, string1)

Copy the content of the

 char a[]= "abcd" , b[]=" ";
 strcpy (b , a);

 1nd string into the 2st string cout << a << b;

Append the content of

 char a[]= "abcd" , b[]="1234";

strcat (string1, string2)

 strcat (a , b);
 the 2nd string into the end cout << a << b;
 of the 1st string abcd1234 1234

 Return 0 if the 1st string is

 equal to the 2nd string. char a[]= "abcd" , b[]="abcd";

 Return a Positive number cout << strcmp (a , b);

strcmp (string1, string2)

 if the 1st string is greater

 than the 2nd string.
0 if a == b

 Return a Negative + if a > b
 number if the 1st string is - if a < b
 smaller than the 2nd

 string.

4. stdlib Library:

The stdlib library has many member functions of string like:

 Member Function Functionality Example

A atoi (a)

Converts string to int type.

 int i; char a [] = “1234”;

i = atoi (a);

A atof (a)

Converts string to float type.

 float f; char a [] = “12.34”;

f = atof (a);

itoa (i , a , 10);

 Converts integer number to int i = 1234; char a [] = “”;

alphabet (char or string type).

cout << itoa (i , a , 10);

WORK SHEET (7)

String

Q1: Write C++ program to print a string, and then print it character by

character in reveres order.
i.e:

abcd a
b
c

d

Q2: Write C++ program to check each character in the string to convert it

to lower case letter if it’s an upper case letter and convert it to upper

case letter if it’s a lower once.

Q3: Write C++ program to read a sentence and print its words separately.

Q4: Write C++ program to apply the following instructions:

 cin.getline (str, 10);

 cin.get (ch);

 cin.ignor (80, ‘\n’);

 cin.putback (ch);

 cout.put (ch);

Q5: Write C++ program to apply the following instructions:

 strlen (string)

 strcpy (string2, string1)

 strcat (string1, string2)

 strcmp (string1, string2)

Q5: Write C++ program to apply the following instructions:

 i atoi (a)

 f atof (a)

 itoa (i , a , 10);

LECTURE 16

1. Structures:

Structures are typically used to group several data items together to

form a single entity. It is a collection of variables used to group variables into a

single record. Thus a structure (the keyword struct is used in C++) is used.

Keyword struct is a data-type, like the following C++ data-types (int, float,

char, etc...). This is unlike the array, which all the variables must be the same

type. The data items in a structure are called the members of the structure.

General Form of Structure:

struct struct-name

{

variables …

};

2. The Three Ways for Declare the Structure:

A.
#include <iostream.h>

struct data

{
char *name;

int age;
};

void main()

{
struct data student;

B.

struct data

{

char *name;

int age;

} student;

C.

typedef struct

{
char *name;

int age;
} student;

 The above three ways are called structure specifier (tells how the

structure is organized) or it is called structure declaration.

 To access elements in a structure, use a record selector (.).

student . name="ahmed";

student . age=20;

:

}

Note: we can assign more than one name as a structure-name, to the one

structure. For example:

typedef struct

{
char *name;

int age;

} student , lecturer;

Example 1:

 This example uses parts inventory to demonstrate structures.

#include<iostream.h>

Struct part // specify a structure

{

Int model_no;
Int part_no;

Float cost;

}

Void main()

{

Part p1; // define a structure variable.

P1.model_no=6244;

P1.part_no=373;

P1.cost=217.55;

Cout<<”/n model”<<p1.model_no;

Cout<<”, part”<<p1.part_no;
Cout<<”, cost”<<p1.cost;

}

The above program has three main aspects: specifying the structure,

defining a structure variable, and accessing the members of the structure.

3. A measurement example:

Let’s see how a structure can be used to group a different kind of

information. If you have ever looked at an architectural drawing, you know

that distances are measured in feet and inches. The length of a living room,

for example, might be given as 12’-8’’, meaning 12 feet 8 inches. The hyphen

is not a negative sign; it merely separates the feet from the inches. This is part

of the English of measurement. The following program will show how two

measurements of type distance can be added together.

Example 2:

 Write C++ program to find the distance in English system.

#include<iostream.h>

struct distance

{

int feet;

float inches;
}

Void main ()

{

distance d1,d3;

distance d2={11,6.25};
cout<<”\n Enter feet:”;

cin>>d1.feet;

cout<<”\n Enter inches:”;

cin>>d1.inches;

d3.inches=d1.inches+d2.inches;
d3.feet=0;

If (d3.inches >=12.0)

{

d3.inches -=12.0;

d3.feet ++;

}

d3.feet +=d1.feet + d2.feet;
cout<<d1.feet<<”\’-“<<d1.inches<<”\”+”;

cout<<d2.feet<<”\’-“<<d2.inches<<”\”=”;

cout<<d3.feet<<”\’-“<<d1.inches<<”\”\n”;

}

4. Structures within Structures:

You can nest structures within other structures. Here’s a variation on the

English system program that shows how this looks. In the bellow program we

want to create a data structure that stores the dimensions of a typical room:

its length and width. Since we’re working with English distances, we’ll use two

variables of type distance as the length and width variables.

Example 3:

 Write C++ program to find the area of the room in English system.

#include<iostream.h>

struct distance

{
int feet;

float inches;

}

struct room

{

distance length;

distance width;

};

Void main ()

{

room dining;

dining.length.feet=13;

dining.length.inches=6.5;

dining.width.feet=10;
dining.width.inches=0.0;

float L=dining.length.feet+dining.length.inches/12;

float W=dining.width.feet+dining.width.inches/12;

cout<<”\n Dining room area is”<<L*W<<”Square feet”;

}

5. Array of Structures:

The struct is a data-type. So we can define an array as an array of

struct, like define an array as an array of int, or of any other C++ data-types.

However, the following simple example shown how can create and use an

array of struct.

Example 4:

 This simple example to show how can create and use an array of

structure.

#include<iostream.h>

typedef struct

{

char *name;

int age;
} student;

void main ()

{

student array [10];

array [1] . name = "ahmed";

array [1] . age = 20;
cout << array[1] . name << endl;

cout << array[1] . age;

}

cin >> array [1] . name ;

cin >> array [1] . age ;

Example 5:

 Write a C++ Program, using structure type, to read name and age
for ten students.

#include<iostream.h>

typedef struct

{
char *name; //Or name[10]

 int age;

} student;

void main ()

{

student array [10];

for (i = 0 ; i < 10 ; i++)

{

cin >> array [i] . name;

cin >> array [i] . age;

}

for (i = 0 ; i < 10 ; i++)

{
cout << array[i] . name << endl;

cout << array[i] . age;

}

}

6. Functions and Structures:

A structure can be passed to a function as a single variable. The

scope of a structure declaration should be an external storage class

whenever a function in the main program is using a structure data types. The

field or member data should be same throughout the program either in the

main or in a function.

include <iostream.h>

Struct sample {

Int x;

Float

y; };
Sample first ;

Void main (void)
{

Void display (struct sample one); // function declaration
- - -

- - -

Display (one); // function calling

- - -

- - -
}

Void display (struct sample out) // function definition

{

- - -

- - -
Out.x=10;

Out.y=-20.20;

- - -

- - -

}

Example 6:

 Write C++ program to display the contents of a structure using
function definition.

#include<iostream.h>

struct date {

int day;
int month;

int year;

} ;

Void main(void)

Output

Todat’s date is = 10/3/2011

{

date today;
void display (struct date one); // function declaration

today.day=10;

today.month=3;

today.year=2011;

display (today);
}

Void display (struct date one)

{

cout<<”Today’s date is =” << one.day << “/”;

cout<< one.month;

cout<<”/” << one.year << endl;

}

WORK SHEET (8)

Structures

Q1: Write a C++ program, that declares the structure called

Employee_Info, which having the following members:
1- Employee name. (must be less than 25 characters)

2- Employee age. (must be 2 digits)

3- Employee address. (must be less than 20 characters)

4- Phone number. (must be 8 or 11 digits)

5- Country name. (must be less than 29 characters)

Then read and print this information for the 100 Employees.

Q2: Show the declaration of the following:

Employees:
Ind- Employees:

ID.

Name.

Sex.

Rate.

Home:

Street.

City.

State.

BirthDate:
Month.

Day.

Year.

StrartDate:

Month.

Day.

Year.

By using your declaration, write a C++ program that reads and stores

data, then print only employees whose ID number less than 100.

LECTURE 17

1. Enumerated Data Types:

The enumerated data type is a programmer-defined type that is limited

to a fixed list of values. A specifier gives the type a name and specifies the

permissible values definitions then create variables of this type. Internally, the

compiler treats enumerated variables as integers.

Structures should not be confused with enumerated data type.

Structures are a powerful and flexible way of grouping a diverse collection of

data into a single entity.

General Form of EDT:

enum user_defined_name {

member_1;

member_2;

…

…

member_n;

};

Where enum is a keyword for defining the enumeration data type and the

braces are essential. The members of the enumeration data type are the

indivisual identifiers. Once the enumeration data type is defined, it can be

declared in the following ways:

Storage_class enum user_defined_name var.1, var.2, …var.n

where the storage class is optional. For example:

1) Enum sample {

Mon, tue, wed, thu, fri, sat, sun };
Enum sample day1, day2, day3;

2) Enum drinks {

Cola, tea, koffi,rani }

Enum drinks d1, d2, d3;

3) Enum games {

Tennis, chess, football, swimming, walking };

Enum games student, staff;

The EDT declaration can be written in a single declaration as:

Enum sample { Mon, tue, wed, thu, fri, sat, sun }

Day1, day2, day3;

Which is exactly equivalent to:

1) Enum sample { Mon, tue, wed, thu, fri, sat, sun } day1;

Enum sample Day2, day3;

2) Enum sample { Mon, tue, wed, thu, fri, sat, sun };

Enum sample Day1;

Enum sample Day2;

Enum sample Day3;

The enumeration constants can be assigned to the variable like day1=mon;.

The enumeration constants are automatically assigned to integers starting

from 0, 1, 2 etc. up to the last number in the enumeration.

Example 1:

Write C++ program to declare the EDT and to display the integer

values on the screen.

#include <iostream.h>

Void main(void)
{

enum sample { Mon, tue, wed, thu, fri, sat, sun }

day1, day2, day3, day4, day5, day6, day7;

day1=mon;

day2=tue;
day3=wed;

day4=thu;

day5=fri;

day6=sat;

day7=sun;
cout<<”Monday = “<<day1 <<endl;

cout<<”Tuesday = “<<day2 <<endl;

cout<<”Wednesday = “<<day3 <<endl;

cout<<”Thursday = “<<day4 <<endl;

cout<<”Friday = “<<day5 <<endl;

 Output:

= 0 Monday

 Tuesday = 1
 Wednesday = 2
 Thursday = 3
 Friday = 4
 Saturday = 5

 Sunday =6

cout<<”Saturday

cout<<”Sunday

= “<<day6 <<endl;

= “<<day7 <<endl;

}

These integers are normally chosen automatically but they can also be

specified by the programmer with negative or positive numbers, for example

Enum sample {mon, tue, wed=10, thu, fri, sat=-5, sun}

day1, day2, day3, day4, day5, day6, day7;

The C++ compiler assigns the enumeration constants as
Monday = 0

Tuesday = 1

Wednesday = 10

Thursday = 11

Friday = 12

Saturday = -5

Sunday =-4

Example 2:

Write C++ program to declare the EDT and to display the difference

between days.

#include <iostream.h>

Enum days_of_week { Mon, tue, wed, thu, fri, sat, sun }

Void main(void)

{

days_of_week day1, day2;

day1=mon;
day2=thu;

int diff=day2-day1; // can do integer arithmatic

cout<<”Days between=”<<diff<<endl;

if (day1 < day2) // can do comparision

cout<<”dau1 comes before day2 \n”;
}

Example 3:

Write C++ program to count the places in a sentence where a string of

nonspaces character changes to spaces.

#include <iostream.h>

#include <conio.h>

enum boolean {false,true}; // false=0 , true=1

Void main()
{

boolean isword=false; // true when word, false when whitespace

char ch=’a’; // character read from keyboard

int wordcount=0; // numbers of words reads

do
{

ch=getche(); // get character

if (ch==’ ‘ || ch==’\r’) // if white space or enter key

{

if (isword)
{

wordcount++; // count the word

isword=false; // reset flag

}

}
else // otherwise its normal char.

if (! isword) // if start of word

isword=true; // set flag

}

while (ch!=’\r’); // quit on enter key
cout <<”\n --- word count is”<<wordcount<<”---\n”;

}

WORK SHEET (9)

EDT

Q1: Write C++ program to declare the EDT and to display the difference

between months.

Q2: Write C++ program to declare the EDT and to display the number of each

season.

Q3: Write C++ program to read 10 employee and display the information of

each one when enter its number.

Employee code

Employee name

Employee sex (EDT)

Employee craduate (B.Sc. , M.Sc., Ph. D.) (EDT)

LECTURE 18

1. Pointers:

The pointer is a powerful technique to access the data by indirect

reference as it holds the address of that variable where it has been stored in

the memory.

2. Pointer Declaration:

A pointer is a variable which holds the memory address of another

variable. The pointer has the following advantages:

1. It allows passing variables, arrays, functions, strings and structures as

function arguments.

2. A pointer allows returning structured variables from functions.

3. It provides functions which can modify their calling arguments.

4. It supports dynamic allocation and deallocation of memory segments.

5. With the help of a pointer, variables can be swapped without physically

moving them.

6. It allow to establish links between data elements or objects for some

complex data structures such as linked lists, stacks, queues, binary trees,

tries and graphs.

7. A pointer improves the efficiency of certain routines.

In C++ pointers are distinct such as integer, float, character, etc. A pointer

variable consists of two parts, namely, (i) the pointer operator and (ii) the

address operator.

Pointer Operator:

A pointer operator can be represented by a combination of (*) with a

variable, for example int *ptr; where ptr is a pointer variable which holds the

address of an integer data type.

General Form of Pointer:

Data_type *pointer_variable;

Example: int x, y; int *ptr1, *ptr2;

Address Operator:

An address operator can be represented by a combination of & with a

pointer variable. For example, if a pointer variable is an integer type and also

declared (&) with the pointer variable, then it means that the variable is of

type “address of”. For example m=&ptr;. Note that the pointer operator & is

an operator that returns the address of the variable following it.

Note:

Notice the difference between the reference and dereference operators:

& is the reference operator and can be read as "address of"

* is the dereference operator and can be read as "value pointed by"

Thus, they have complementary (or opposite) meanings. A variable

referenced with & can be dereferences with *.

Examples:

(1) Ptr1 = &x; The memory address of variable x is assigned to the pointer

variable ptr1.

(2) Y=*prt1; The contents of the pointer variable ptr1 is assigned to the

variable y, not
the memory address.

(3) Ptr1=&x; The address of the ptr1 is assigned to the pointer variable ptr2.

The contents
Ptr2=ptr1; of both ptr1 and ptr2 will be the same as these two pointer

variables hold
the same address.

Example:

andy = 25;

ted = &andy;

Right after these two statements, all of the following expressions would give

true as result:

andy == 25

&andy== 1776

ted == 1776

*ted == 25

Examples of invalid pointer declaration:

(1) int x;

int x_pointer;

x_pointer=&x;
Error: pointer declaration must have the prefix of *.

(2) float y;

float *y_pointer;

y_pointer=y;
Error: While assigning variable to the pointer variable the address

operator (&) must used along with the variable y.

(3) int x;
char *c_pointer;

c_pointer = &x;
Error: Mixed data type is not permitted.

Example 1:

 This simple example to show how can create and use pointer of
char.

#include <iostream.h>

int main()

{

char c='a';

char *p_c = &c;
cout<< *p_c;

}

Example 2:

 This simple example to show how can create and pointer of
integer.

#include <iostream.h>

main()

{

int myval=10;
int *p_myval;

p_myval = &myval;

cout<<*p_myval;

}

Example 3:

#include <iostream.h>

main()

{
int myval = 7;

int *p_myval = &myval;

*p_myval = 6;

cout<<*p_myval<<"\n";

cout<<myval;
}

Example 4:

#include <iostream.h>

main()

{

int myval=5;

int myval2 = 7;
int *p_primate;

p_primate = &myval;

*p_primate = 9;

p_primate = &myval2;

*p_primate = 10;

cout<<myval<<" "<<myval2;
}

Example 5:

#include <iostream.h>

Void main(void)

{
Float value;

Float *ptr;

Value = 120.00;

Ptr = &value;

Cout<< “Memory address =”<<ptr<<endl;
Ptr --;

Cout<<”Memory address after decrementer =”;

Cout<<ptr<<endl;

}

3. Pointers and Functions:

Pointers are very much used in a function declaration. Sometimes only

with a pointer a complex function can be easily represented and accessed.

The use of the pointers in a function definition may be classified into two

groups; they are call by value and call by reference.

Call by value:

Whenever a portion of the program invokes a function with formal

arguments, control will be transferred from the main to the calling function

and the value of the actual argument is copied to the function. Within the

function, the actual value copied from the calling portion of the program

may be altered or changed. When the control is transferred back from the

function to the calling portion of the program, the altered values are not

transferred back. This type of passing formal arguments to a function is

technically known as call by value.

Example 6:

A program to exchange the contents of two variables using a call

by value.

#include <iostream.h>

Void main(void)

{
Int x,y;

void swap (int,int);

x=100;

y=20;

cout<<”values before swap”<<endl;

cout<<”x=”<<x<<”and y=”<<y<<endl;

swap(x,y); //call by value

cout<<”values after swap”<<endl;

cout<<”x=”<<x<<”and y=”<<y<<endl;

}

int func (int x, int y)

{

int temp;

temp=x;
x=y;

y=temp;

}

O/P:

values before swap
x=100 and y=20

values after swap
x=100 and y=20

Call by reference:

When a function is called by a portion of a program, the address of the

actual arguments is copied onto the formal arguments, though they may be

referred by different variable names. The content of the variables that are

altered within the function block are returned to the calling portion of a

program in the altered form itself, as the formal and the actual arguments are

referencing the same memory location or address. This is technically known as

call by reference or call by address or call by location.

Example 7:

A program to exchange the contents of two variables using a call

by reference

#include <iostream.h>

Void main(void)
{

Int x,y;

void swap (int *x, int *y);

x=100;

y=20;
cout<<”values before swap”<<endl;

cout<<”x=”<<x<<”and y=”<<y<<endl;

swap(&x, &y); //call by reference

cout<<”values after swap”<<endl;

cout<<”x=”<<x<<”and y=”<<y<<endl;

}

int func (int *x, int *y)

{

int temp;

temp=*x;
*x = *y;

*y=temp;

}

O/P:
values before swap
x=100 and y=20

values after swap
x=100 and y=100

LECTURE 19

1. Pointers and Arrays:

In C++, there is a close correspondence between array data type and

pointers. An array name in C++ is very much like a pointer but there is a

difference between them. The pointer is a variable that can appear on the

left side of an assignment operator. The array name is a constant and cannot

appear on the left side of an assignment operator. In all other respects, both

the pointer and the array are the same.

Valid :

int value[20];

int *ptr;

ptr=&value[0]; //the address of the zeroth element is assigned to a pointer

variable ptr.

ptr++ == value[1];

ptr+6 == &value[6];

*ptr == &value[0]

*ptr == &value[]

*(ptr+6) == value[6]

ptr ++ == &value[1]

Example:

int s[200];

int *sptr;

sptr=s;

→ sptr = &s[0];

Example 1:

A program to display the content of an

arithmetic

#include <iostream.h> void main(void) {

static int a[4]= {11, 12, 13, 14 }; int i, n, temp;

n=4;

cout<<”Contents of the array” << endl;

for (i=0; i<=n-1; ++i) {

temp = *((a) + (i)); // or temp= *(&(a)[0] + (i));

cout<<”value =”<<temp <<endl;

}

}

2. Arrays of Pointers:

The pointers may be arrayed like any other data type. The declaration

for an integer pointer array of size 10 is int *ptr[10]; makes ptr[0], ptr[1], ptr[2],

… , ptr[10];

Where ptr is an array of pointers that can be used to point the first elements of

the arrays a, b, c. The following are valid assignment statements in C++: Ptr[0]

= &a[0];

Ptr[10] = &b[0];

Ptr[20] = &c[0];

Example 2:

A program to display the content of pointers using an array of

pointers

#include <iostream.h>

contents of pointer 1 = Ahmed void main(void)

contents of pointer 2 = Reem {

contents of pointer 3 = Ali Char *ptr[3];

Ptr[0]=”Ahmed”;

Ptr[1]=”Reem”;

Ptr[2]=”Ali”;

Cout<<”contents of pointer 1 =”<<ptr[0]<<endl;

Cout<<”contents of pointer 2 =”<<ptr[1]<<endl;

Cout<<”contents of pointer 3 =”<<ptr[2]<<endl; }

array using a pointer

Contents of the array
Value =11

Value =12

Value =13

Value =14

3. Pointers to Pointers:

An array of pointers is the same as pointers to pointers. As an array of

pointers is easy to index because the indices themselves convey the meaning of

a class of pointers. However, pointers to pointers can be confusing. The pointer

to a pointer is a form of multiple of indirections or a class of pointers. In the case

of a pointer to a pointer, the first pointer contains the address of the second

pointer, which points to the variable that contain the values desired. Multiple

indirections can be carried on to whatever extent desired, but there are a few

cases where more pointer to a pointer is needed or written.

Int **ptr2;

Where ptr2 is a pointer which holds the address of the another pointer.

pointer variable

pointer pointer variable

Example 3:

A program to declare the pointer to pointer variable and to display

the contents of thesepointers

#include <iostream.h>
void main(void)

{ Value = 120

int value; Pointer 1 = 120
int *ptr1;

 Pointer 2 =120
int **ptr2;

value = 120;

cout<< “value =”<<value<<endl;

ptr1=&value;

ptr2=&ptr1;
cout<<”pointer 1=”<<*ptr1<<endl;

cout<<”pointer 2=”<<**ptr2<<endl;

}

WORK SHEET (9)

Pointer

Q1:

Q2:

Write a C++ program, to applied the mathematic operation by

pointer.

Find the output:

#include<iostream.h>

int main ()

{

int *x;

int *p,*q;

int c=100,a;

x=&c;

p=x+2;

q=x-2;

a=p-q;

cout << "The address of x : " << x << endl;

cout << "The address of p after incrementing x by 2 : " << p <<

endl; cout << "The address of q after derementing x by 2 : " << q <<

endl; cout << " The no of elements between p and q :" << a << endl;

return(0);

}

