
 Programming Logic controller 

 

1 
 

Programming Logic controller (PLC) 

            Programmable Logic Controller (PLC) is a microprocessor 

based system that uses programmable memory to store instructions 
and implement functions such as logic, sequencing, timing, counting 

and arithmetic in order to control machines and processes.                     

                                                          

Advantage of PLC control systems 

1. Flexible. 

2. Faster response time. 

3. Less and simpler wiring. 

4. Solid-state-no moving parts. 

5. Modular design-easy to repair and expand. 

6. Ease of troubleshooting. 

7. Less expensive. 

Major Components of PLC 

PLC is essentially a microcomputer consisting of hardware and  A            

software. The major components are 

1. Power Supply module. 

2. Input module. 

3. Central processing unit (CPU). 

4. Output module. 

5. Programming device. 

 

 

 

 

 



 Programming Logic controller 

 

2 
 

 

  

Figure (1): PLC Components 

 

Factors of selecting switches 

1. Contact type (e.g. 1-pole, 2-pole). 

2. Current rating. 

3. Voltage rating. 

4. Method of operation. 

5. Dielectric strength. 

6. Electrical life and mechanical life. 

Factors of selecting sensors switches 

1. Type of sensor. 

2. Design of sensor. 

3. Sensing range. 

4. Electrical data and connection. 

Programming device 

Central Processing Unit Input 

module 

Output 

modulee

s 

Power supply 

Operator module 



 Programming Logic controller 

 

3 
 

5. Response speed. 

 

Types of sensors 

1. Proximity sensors. 

2. Position sensors. 

3. Inductive sensors. 

4. Optical sensors. 

5. Capacitive sensor.  

6. Pressure sensors. 

 

Number Systems 

         There are four systems of arithmetic which are often used in 

digital circuits. These systems are 

1. decimal system. 

2. binary system. 

3. octal system.  

4. hexadecimal system.  

 

The Decimal Number System 

       The decimal number system has a base of 10 meaning that it 

contains ten unique symbols (or digits) .These are:1, 2, 3, 4, 5, 6, 7, 8, 9  

2573 = 2 × 103 + 5 × 102 + 7 × 101 + 3 × 100   

   13432 = 1 × 104 + 3 × 103 + 4 × 102 + 3 × 101 + 2 × 100 

Again, the number 2573.469 can be written as 



 Programming Logic controller 

 

4 
 

  2573.469 = 2 × 103 + 5 × 102 + 7 × 101 + 3 × 100 + 4 × 10−1 + 6 × 10−2 + 9 × 10−3 

 

The Binary Number System 

       Its base or radix is two because it uses only digit is 0 and 1. All 

binary numbers consist of a string of 0 and 1. 

Example1:- convert (11001)𝟐 to its equivalent decimal number. 

Solution.  The four steps involved in the conversion are as under 

Step1.   1      1      0     0    1 

Step2.  16     8      4     2    1 

Step3.   16    8      0     0     1 

Step4.    16+8+1=25              (11001)𝟐=(25)𝟏𝟎 

Or 

11001 = 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 = (25)
𝟏𝟎

  

Example2:- convert (101.101)𝟐 to its equivalent decimal number. 

Solution.  

(101.101)𝟐 = 1 × 22 + 0 × 21 + 1 × 20 + 1 × 2−1 + 0 × 2−2 + 1 × 2−3 

          (101.101)𝟐 =  (5.625)
𝟏𝟎

  

Decimal to binary convert 

(a) Integers 

As an example, let us convert (25)𝟏𝟎 into its binary equivalent 

25 ÷ 2 = 12     reminder of 1 

12 ÷ 2 = 6       reminder of 0 



 Programming Logic controller 

 

5 
 

6 ÷ 2 = 3          reminder of 0 

3 ÷ 2 = 1          reminder of 1 

1 ÷ 2 = 0          reminder of 1 

(25)𝟏𝟎 = (11001)𝟐 

 

 (b) Fractions  

 Example 4:- convert (25.625)𝟏𝟎 into its binary equivalent. 

Solution:-  

(a) Integers                 (b) Fractions  

25 ÷ 2 = 12       reminder of 1        0.625 ÷ 2 = 1.25      reminder of 1    

12 ÷ 2 = 6         reminder of 0         0.25 ÷ 2 = 0.5       reminder of 0 

6 ÷ 2 = 3           reminder of 0           0.5 ÷ 2 = 0       reminder of 1        

3 ÷ 2 = 1          reminder of 1           

1 ÷ 2 = 0          reminder of 1                                                             

(25)𝟏𝟎 = (11001)𝟐                               (0.625)𝟏𝟎 = (0.101)𝟐                      

(25.625)𝟏𝟎 = (11001.101)𝟐 

 

Octal Number System 

        It has a base of 8 which means that it has eight distinct counting 

digits : 0, 1, 2, 3, 4, 5, 6, 7 these digits 0 through 7, have exactly the 

same physical meaning as in decimal system. 

For example, decimal equivalent of octal 325 is 

(325)𝟖 = 2 × 82 + 5 × 81 + 2 × 80= (234)𝟏𝟎 

Similarly, decimal equivalent of octal 127.24 is 



 Programming Logic controller 

 

6 
 

(127.24)8 = 1 × 82 + 2 × 81 + 7 × 80 + 2 × 8−1 + 4 × 8−2 = (87.3125)𝟏𝟎 

Decimal to Octal Conversion 

Let us see how we can convert (175)𝟏𝟎 into its octal equivalent. 

175 ÷ 8 = 21                with 7 reminder 

21 ÷ 8 = 2               with 5 reminder 

2 ÷ 8 = 0                  with 2 reminder 

Taking the remainders in the reverse order, we get (257)𝟖 

(175)𝟏𝟎 = (257)𝟖 

Let us now take decimal fraction (0.15)𝟏𝟎 . Its octal equivalent can be founds as 

under 

0.15 × 8 = 1.20         with  1 reminder 

0.20 × 8 = 1.60         with 1 reminder 

0.60 × 8 = 4.80         with  4 reminder 

(0.15)𝟏𝟎 = (114)𝟖 

 

Hexadecimal Number System 

It has a base of 16. Hence, it uses sixteen distinct counting digits  0 through 9 and 

a through F as detailed below : 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. 

Decimal to hexadecimal conversion 

As an example let us convert decimal 1983 into hexadecimal  

1983 ÷ 16 = 123    with reminder 15    F        

123 ÷ 16 = 7   with reminder 11             B 

7 ÷ 16 = 0   with reminder                        7   



 Programming Logic controller 

 

7 
 

Hence, (1983)𝟏𝟎 = (7BF)𝟏𝟔 

 Hexadecimal to decimal conversion  

As an example, let us convert (F6D9)𝟏𝟔 to decimal 

(F6D9)𝟏𝟔 = F × 163 + 6 × 162 + D × 161 + 9 × 160 

= 15 × 163 + 6 × 162 + 13 × 161 + 9 × 160 = (63193)𝟏𝟎 

 

 

 

 

 

 

Byte =8 bits 

Word=2 Bytes =16 bits 

 

PLC PRODUCT APPLICATION RANGES 

          Figure 1-1 graphically illustrates programmable controller 

product ranges. This chart is not definitive, but for practical purposes, it 

is valid. The PLC market can be segmented into five groups: 

1. Micro PLCs 

2. Small PLCs 

3. Medium PLCs 

4. Large PLCs 



 Programming Logic controller 

 

8 
 

5. Very large PLCs 

 

ONE’S AND TWO’S COMPLEMENT 

ONE’S COMPLEMENT 

       The number is positive if the sign bit is 0 and negative if the sign 

bit is 1. Using the one’s complement method, +23 decimal is 

represented in binary, as shown here with the sign bit (0) indicated in 

bold: 

 𝟎  101112 

The negative representation of binary 10111 is obtained by placing a 1 

in the most significant bit position and inverting each bit in the number 

(changing1s to 0s and 0s to 1s). So, the one’s complement of binary 

10111 is: 

 𝟏  010002 

 

If a negative number is given in binary, its one’s complement is 

obtained in the same fashion. 

−1510 = 𝟏  00002 

+1510 = 𝟎  11112 

 

TWO’S COMPLEMENT 

        in the two’s complement, each bit, from right to left, is inverted 

only after the first 1 is detected. Let’s use the number +22 decimal as an 

Example: 

   +2210 = 𝟎  101102 



 Programming Logic controller 

 

9 
 

Its two’s complement would be: 

 −2210 = 𝟏  010102 

Note that in the negative representation of the number 22, starting from 

the right, the first digit is a 0, so it is not inverted; the second digit is a 

1, so all digits after this one are inverted. 

 −1410 = 𝟏  100102 

                  +1410 = 𝟎  011102 

 

                 +1710 = 0  100012 

                                                       −1710 = 1  011112 

  

                 +710 = 0  001112 

                                                       −710 = 1  110012 
 

                 +110 = 0  000012 

                −110 = 1  111112 

  

The two’s complement is the most common arithmetic method used in 

computers, as well as programmable controllers. 

 

BINARY CODES 

            Several codes for representing numbers, symbols, and letters are 

standard throughout the industry. Among the most common are the 

following: 

1. BCD 

2. Gray 

3. ASCII 

 

 



 Programming Logic controller 

 

10 
 

 

Binary Coded Decimal (BCD) 

        Table 1-2 illustrates the relationship between the BCD code and 

the binary and decimal number systems. 

 

     The BCD representation of a decimal number is obtained by 

replacing each decimal digit with its BCD equivalent. The BCD 

representation of decimal 7493 is shown here as an example: 

 

Example:- write the decimal number 369 in BCD code                         

Solution .                                                                                     

                         

3=0011,        6=0110,        9=1001, 

36910 = 001101101001𝐵𝐶𝐷 

 

Example: - Find the equivalent decimal value for the BCD code 

number 0001010001110101. 

 



 Programming Logic controller 

 

11 
 

Solution:- 

0001=1,         0100=4,         0111=7,       0101=5, 

Hence       0001010001110101𝐵𝐶𝐷 = 147510     

 

Gray code 

     Table 1-3 shows this code with its binary and decimal equivalents 

for comparison. 

Table 1-3. Gray code, binary, and decimal counting. 

 

ASCII 

       Alphanumeric codes (which use a combination of letters, symbols, 

and decimal numbers) These alphanumeric characters—26 letters 

(uppercase),10 numerals (0-9), plus mathematical and punctuation 

symbols— can be represented using a 6-bit code (i.e., 26 = 64 possible 

characters). The most common code for alphanumeric representation is 

ASCII (the American Standard Code for Information Interchange). 



 Programming Logic controller 

 

12 
 

Figure 1-2 a shows the binary ASCII code representation of the letter Z 

(132). 

 

 

 

 

 

 

 

 

  

 

 

Figure 1-2. (a) ASCII representation of the character Z and (b) the 

ASCII transmission of the character Z. 

 

BINARY CONCEPTS 

          In digital systems, these two states are actually represented by 

two distinct voltage levels, +V and 0V, as shown in Table 1-4. 

1.  Positive logic 

 

 

 

  

 

 

 

             Table 1-4. Binary concept using positive logic.   

 



 Programming Logic controller 

 

13 
 

2. Negative logic 

           As illustrated in Table 1-5, uses 0 to represent the more 

positive voltage level, or the occurrence of the event. 

Consequently, 1 represents the nonoccurrence of the event, or the 

less positive voltage level. 

                            Table 1-5. Binary concept using negative logic. 

 

LOGIC FUNCTIONS  

        Operations performed by digital equipment, such as programmable 

controllers, are based on three fundamental logic functions—AND, OR, 

and NOT. These functions combine binary variables to form statements. 

Each function has a rule that determines the statement, outcome (TRUE 

or FALSE) and a symbol that represents it.  

 

THE AND FUNCTION 

       Figure 1-3 shows a symbol called an AND gate, which is used to 

graphically represent the AND function. The AND output is TRUE (1) 

only if all inputs are TRUE (1). 

 

  
 

 



 Programming Logic controller 

 

14 
 

EXAMPLE 3-1 

Show the logic gate, truth table, and circuit representations for an alarm 

horn that will sound if its two inputs, push buttons PB1 and PB2, are 1 

(ON or depressed) at the same time.                                                           

SOLUTION 

 

 
 

 

  

 

 

 

 

 



 Programming Logic controller 

 

15 
 

THE OR FUNCTION 

Figure 1-4 shows the OR gate symbol used to graphically represent the 

OR function. The OR output is TRUE (1) if one or more inputs are 

TRUE (1). 

 

 

 

 

 

Figure 1-4. Two-input OR gate and its truth table. 

 

EXAMPLE 3-2 

Show the logic gate, truth table, and circuit representations for an 

Alarm horn that will sound if either of its inputs, push button PB1 or 

PB2, is 1 (ON or depressed). 

 

SOLUTION:- 

 

 

 

 

 

 

 

 

 



 Programming Logic controller 

 

16 
 

 

 

THE NOT FUNCTION 

           Figure 1-5 illustrates the NOT symbol, which is used to 

graphically represent the NOT function. The NOT output is TRUE (1) if 

the input is FALSE (0). Conversely, if the output is FALSE (0), the 

input is TRUE (1). The result of the NOT operation is always the 

inverse of the input; therefore, it is sometimes called an inverter.                                             

  

 

Figure 1-5. Symbol for the NOT function. 

 

  

 

 

 

 

Figure 1-6. NOT gate and its truth table. 

 

 

 



 Programming Logic controller 

 

17 
 

EXAMPLE 3-3 

Show the logic gate, truth table, and circuit representation for a solenoid 

valve (V1) that will be open (ON) if selector switch S1 is ON and if 

level switch L1 is NOT ON (liquid has not reached level).                     

SOLUTION:- 

 

                                                     

                        

 
 

 

 

 

 

 

 

EXAMPLE 3-4(Homework) 

Show the logic gate, truth table, and circuit representation for an alarm 

horn that will sound if push button PB1 is 1 (ON or depressed) and PB2 

is NOT 0 (not depressed). 

 

 



 Programming Logic controller 

 

18 
 

3-3 PRINCIPLES OF BOOLEAN ALGEBRA AND 

LOGIC 

     Figure 1-8 summarizes the basic Boolean operators as they relate to 

the basic digital logic functions AND, OR, and NOT. These operators 

use capital letters to represent the wire label of an input signal, a 

multiplication sign (•) to represent the AND operation, and an addition 

sign (+) to represent the OR operation. A bar over a letter represents the 

NOT operation. 

 

 
Figure 3-8. Boolean algebra as related to the AND, OR, and 

NOT functions. 

 
1. Basic Gates. Basic logic gates implement simple logic 

functions. Each logic function is expressed in terms of a 

truth table and its Boolean expression. 

 

  

 

 

 

 

 



 Programming Logic controller 

 

19 
 

 

2. Combined Gates. Any combination of control functions can be 

expressed in Boolean terms using three simple operators: (•), (+), 

and (–).   

 

4. Application of De Morgan’s Laws. De Morgan’s Laws are 

frequently used to simplify inverted logic expressions or to 

simply convert an expression into a usable form.                                                  

           According to De Morgan’s Laws: 
  

 

 

 

 

 

 

 

 

ADDRESSES USED IN PLCS 

Figure 1-9 illustrates a simple electrical ladder circuit and its equivalent 

PLC implementation. 

 
 



 Programming Logic controller 

 

20 
 

 

 

Figure 1-9. Electrical ladder circuit and its equivalent PLC 

implementation. 

 

  

 

 

 

 

 

 

Figure 1-10. Field devices from Figure 1-9 connected to I/O module. 

 

 

CONTACT SYMBOLS USED IN PLCS 

        The symbols in Table 3-5 are used to translate relay control logic 

to contact symbolic logic. These symbols are also the basic instruction 

set for the ladder diagram, excluding timer/counter instructions. 



 Programming Logic controller 

 

21 
 

Symbol Definition and Symbol Interpretation 

  

Normally open contact 

  

Normally closed contact. 

  

Output 

  

NOT output 

 

 

 

 

 

 

 



 Programming Logic controller 

 

22 
 

 



 Programming Logic controller 

 

23 
 

Major Components of CPU(central processing unit) 

        The CPU forms what can be considered to be the “brain” of the 

system. The three components of the CPU are: 

1. the processor 

2. the memory system 

3. the power supply 

Figure 1-11 illustrates a simplified block diagram of a CPU. 

 

Figure 1-11. CPU block diagram. 

 

Figure 1-12 illustrates the functional interaction between a PLC’s basic 

components. 

Figure 1-12. Functional interaction of a PLC system. 



 Programming Logic controller 

 

24 
 

PROCESSORS 

         Very small microprocessors (or micros)—integrated circuits 

with tremendous computing and control capability—provide the 

intelligence of today’s programmable controllers. They perform 

mathematical operations, data handling, and diagnostic routines that 

were not possible with relays or their predecessor, the hardwired logic 

processor. 

        The microprocessors used in PLCs are categorized according to 

their word size, or the number of bits that they use simultaneously to 

perform operations. Standard word lengths are 8, 16, and 32 bits. This 

word length affects the speed at which the processor performs most 

operations. For example, a 32- bit microprocessor can manipulate data 

faster than a 16-bit micro, since it manipulates twice as much data in 

one operation. 

 

 

PROCESSOR SCAN 

Figure 1-13 shows a graphic representation of the scan. The scanning 

process is repeated over and over in the same fashion, making the 

operation sequential from top to bottom. Sometimes, for the sake of 

simplicity, PLC manufacturers call the solving of the control program 

the program scan and the reading of inputs and updating of outputs the 

I/O update scan. Nevertheless, the total system scan includes both. The 

internal processor signal, which indicates that the program scan has 

ended, is called the end-of-scan (EOS) signal.                                           

      The time it takes to implement a scan is called the scan time. The 

scan time is the total time the PLC takes to complete the program and 

I/O updates scans.                                                                                       

The program scan time generally depends on two factors: 



 Programming Logic controller 

 

25 
 

1. The amount of memory taken by the control program. 

2. The type of instructions used in the program.                                                            

The time required to make a single scan can vary from a few tenths 

of a millisecond to 50 milliseconds. 

 

Figure 1-13. PLC total scan representation.                          

 

 

THE MEMORY SYSTEM 

MEMORY SECTIONS 

          The total memory system in a PLC is actually composed of two 

different memories . 

1. the executive memory 

2. the application memory 

 

The following discussion describes six types of memory and how their 

characteristics affect the manner in which programmed instructions are 

retained or altered within a programmable controller. 

1. READ-ONLY MEMORY 

2. RANDOM-ACCESS MEMORY 

3. PROGRAMMABLE READ-ONLY MEMORY 

4. ERASABLE PROGRAMMABLE READ-ONLY MEMORY 



 Programming Logic controller 

 

26 
 

5. ELECTRICALLY ALTERABLE READ-ONLY MEMORY 

6. ELECTRICALLY ERASABLE PROGRAMMABLE 

 

MEMORY STRUCTURE AND CAPACITY 

Bit :  each cell is called a bit. A bit, then, is the smallest structural unit 

of memory. 

 

Byte :  a byte is the smallest group of bits that can be handled by the 

processor at one time. byte size is normally eight bits (byte=8 bit). 

 

Word: a word is also a fixed group of bits that varies according to the 

controller; however, words are usually one byte or more in length. 

 

 

 

 

        Figure 1-14. Units of PLC memory: bits, bytes, and words. 

 

EXAMPLE:-  
Referencing Figure 1-15, what happens to internal 2301 (word 23, bit 

01) when the limit switch connected to input terminal 10 closes?  

 

Figure 1-15. Open limit switch connected to an internal output. 

 

SOLUTION:- 

When LS closes (see Figure 1-16), contact 10 will close, turning 

internal output 2301 ON (a 1 in bit 01 of word 23). This will close 



 Programming Logic controller 

 

27 
 

contact 2301 and turn real output 20 ON, causing the light PL to turn 

ON at the end of the scan. 

 

 

 

 

 

 

 

Figure 1-16. Closed limit switch connected to an internal output. 

  

 

AC/DC INPUTS 

Figure 1-17 shows a typical AC/DC input circuit.An AC/DC input 

circuit has two primary parts: 

• The power section 

• The logic section 

Figure 1-17. Typical AC/DC input circuit. 

 



 Programming Logic controller 

 

28 
 

AC OUTPUTS 

Figure 1-18 illustrates a typical AC output circuit. 

 

 

Figure 1-18. Typical AC output circuit. 

  

 

TYPES OF PLC LANGUAGES 

The three types of programming languages used in PLCs are: 

1. ladder 

2. Boolean 

3. Grafcet (Graphe Fonctionnel) 

 

EXAMPLE:-  

Solve the logic rung shown in Figure 1-19 so that no reverse power 

flow condition exists. The reverse condition is not part of the required 

logic for the output to be energized. 

 

 

 



 Programming Logic controller 

 

29 
 

 

 

 

 

Reverse power flow at contact D.                             Figure 1-19 

   

SOLUTION:- 

 The forward power flow of the logic determines output Y. Let’s 

implement it using logic concepts. The output Y is defined, using 

forward paths only, as:                                                                                

   

 

Which can be minimized, using Boolean algebra’s distributed rule 

 

 

Figure 1-20 shows the implementation of this logic gate, while Figure 

1-21 gives the ladder-equivalent solution. 

 

 

 

Figure 1-20. Logic solution for Example. 

 



 Programming Logic controller 

 

30 
 

 

 

 

 

 

 

Figure 1-21. Ladder diagram implementation for Example 

 


